
Hi everybody, I’m going to wrap up this session by diving 
a little deeper into the algorithms.

This is the Lifted Curls algorithm that my students and 
Professor Darke presented at the Symposium on 
Computer Animation, SCA last year.

What we’re going to see is that past algorithms for 
simulating the motion of hair has an assumption baked 
into the math that the hair is straight, or lightly wavy.

If you make a different assumption, that the hair is very 
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curly, like Black hair, you can change the algorithm, and 
make it both faster and more robust.

Other researchers in the community thought this was 
pretty neat too. We got the Best Paper award at the 
conference last year.
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As with everything else we've seen in this course, we're 
going to look at the specific case of Black hair. Not 
straight hair.
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And here’s one of our results. I’m showing this to you 
first, because it’s not that common to see hair like this in 
computer graphics.
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Over the last 30 years, we’ve instead have looked almost exclusively at the simulation 
of straight or wavy hair.
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Maybe you remember this curly hair paper from Pixar, 
where I used to work.

This is the Taz hair system, developed for the movie 
Brave. It was presented here at SCA exactly 10 years ago.
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But put it side-by-side with our results, and it’s not the 
same. 

Yes, it’s curly. We’re going for curlier.
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Other papers claim to do “curly” hair, but they seem to 
mean noise layered over straight hair. That’s also not 
what we’re going for.

7

[Daviet 2023][Lee et al. 2018]



There is this paper this year with similar hair, which is 
great. This is position-based, whereas ours is FEM.

Some of their findings are similar to ours, where existing 
rod models run into trouble with highly curved strands.

If you’re interested in this topic, you might give this one a 
look too.
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[Hsu et al. 2023]



Then there’s Discrete Elastic Rods, and its extension, 
Discrete Viscous Threads. We’re talk about those later.

I’m mentioning it now just to assure you that, no, I didn’t 
forget about them.
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Let’s start looking at the details of our method, 
particularly the elastic energy.
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Lifted Curls: Energy Design



If you’re not familiar with elastic energy design, I did a whole course on this with 
David Eberle a few years ago, where we went through things in lots of detail.

For any segment-based strand energy, you’re going to need three components.
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First, along each line segment
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We have a stretching term that tries to preserve the 
original length, l0
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l0



Second, between successive line segments
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A bending energy that tries to maintain some rest angle, 
theta0 between the segments.
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𝜃0



I said three components, because these two forces are not 
sufficient. Let’s attach this strand to the wall.
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And say that all of its length and angle constraints are 
satisfied.
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𝜃0
l0

l0



You can actually rotate it
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And still maintain have the same lengths and angle be the 
same.

That might seem right for like a ball and socket joint, but 
for a piece of hair? That doesn’t sound right.

If you twirl a strand of hair that’s attached to your scalp, 
it should resist a little.

So, you need a third energy. A twisting or torsion energy 
is needed to make this description complete.
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Here are the three energies we need, a stretching energy, a 
bending energy, and a torsion energy.

I’m going to describe each one in our model. Two will be 
familiar, but the third will be different.
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Stretching Energy Bending Energy Torsion Energy



So let’s start with the stretching energy
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Stretching Energy



We use a quadratic length penalty
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Stretching Energy



This is nothing special. Lots of people use this energy.
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Geometrically, the stretching energy only involves two 
vertices, so it is intrinsically 1D. We’re dealing with a 
one-dimensional quantity.
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Stretching Energy (1D)



Next let’s look at bending.
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Bending Energy



Again, a quadratic energy
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Bending Energy



Again, lots of people use this.
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Geometrically, this energy involves three vertices, so it is 
intrinsically 2D. We’re essentially looking at a triangle.
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Bending Energy (2D)



Third, the torsion energy. Here, we’re going to do 
something a little bit different. 
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Torsion Energy



If we look at the stretching and bending energy, we see 
that went from 1D to 2D. 

But 2D isn’t sufficient, for torsion
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Stretching Energy (1D) Bending Energy (2D)



We saw under this rotation mode.
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Torsion Energy



That the energy stays exactly the same, so it won’t exert a 
force.

You know what we can add to resolve this ambiguity? 
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Another vertex.

We’re going to define the third component of our energy 
using four vertices.

33



This is then intrinsically a 3D energy. After all, if you 
have four vertices, they form a tetrahedron.
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Torsion Energy (3D)



Let’s look at the projection of the tet along the center 
edge.
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It’ll look something like this.
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And we can measure the angle tau between these two 
non-adjacent segments
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𝜏0



We formulate a new torsion energy that is quadratic with 
respect to tau.
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𝜏0



This does remove the ambiguity. 

With this fourth vertex, we have a force that will try to 
maintain an angle with respect to that vertex.
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If this red vertex rotates, its angle relative to the green 
vertex will change
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And a force will appear to rotate it back.

Exactly the behavior we wanted.
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More formally, the other two energies only exert forces in 
a fixed plane. This was not sufficient.
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The stretching forces are constrained to the plane
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And the bending forces can also only occur in the plane
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It’s only by adding this out-of-plane torsion force
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That we can get the red vertex to snap back to its original 
place.

We’ve added the missing out-of-plane force.
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So here’s the torsion energy again.

If you’re paying attention, you may have an objection to 
this.

47



What if this angle tau0 is degenerate? What if tau0 is 
undefined?
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That can happen.
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If you’re simulating straight hair. We’re not simulating 

straight hair. 
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We’re simulating curly hair. The angle will always be 
well- defined.

Just an aside – we did try it on straight hair, and it 
actually does fine.
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Okay, that’s the terms of our energy. All quadratic.
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Stretching

Bending

Torsion



Again, referring back to my course notes from two years ago, if you want to push an 
energy into an FEM-style solver, you need to filter its eigenvalues. Can we get 
expressions for them?
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Let’s look at the stretching energy.

This is the oldest and simplest-looking term

But numerically, it’s the most important term, because 
with hair, it’s the stiffest energy of the system.
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Stretching



Let’s start with the edge
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Stretching



Let’s look at the direction along the edge
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Stretching



If we normalize it according to the length of the original 
edge.
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Stretching



Then this is a 1D deformation gradient. Let’s call it d.
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Stretching



If you then take the norm of this direction, you get a 
deformation invariant
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Stretching



Once you have an invariant, you can do a bunch of 
analysis that gets you the closed-form eigensystem.

Details are in the paper. I’ll just summarize the results 
here.
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Here’s the first eigenvector.

Quite reasonably, it points along the direction of the 
edge.
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The other two eigenvectors are not unique, but span the 
plane orthogonal to the edge. This also seems reasonable. 
For an isotropic rod, there shouldn’t be a preferred 
buckling direction.

Now the eigenvalues.
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First, the eigenvalue along this edge? It can’t go negative. 
For our quadratic energy, it’s just a constant.
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The eigenvalues for the buckling direction look like this, 
and only go negative under compression. 

This is reasonable, because if you look at my student 
Haomiao Wu’s paper from last year, she saw that this 
corresponds to the physics of buckling.
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Here’s something interesting. There's a very common 
approximation that occurs for these kinds of simulations.
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Gauss-Newton approximation, which amounts to 
throwing this term away.
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Gauss-Newton



For the super-specific case of stretching energies,
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Filtering off the negative eigenvalues under compression, 
exactly equals the Gauss-Newton approximation. That 
strategy actually is the exact eigenvalue filter.

But, a warning: don’t use it all the time, just under 
compression. We’ll see examples later.
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That’s it for stretching
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Let’s look at bending
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Bending



For this, my student Haomiao Wu did an extremely in-
depth analysis of the phenomena in her paper last year.
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We actually present an alternative analysis in our Lifted 
Curls paper, based on the special case where the edges are 
unit length. 

Under this approach, you can get some extremely simple 
results.
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When I mean simple, I mean really simple.

73



Under this different coordinate system, some of the eigenvalues work out to 1 and -1. 
Hard to get simpler than that.

You then have to do a little work to multiply the edge 
lengths back in, but I refer you to the paper for details.
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Okay, one energy left
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Stretching

Bending

Torsion



Okay, one energy left
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Torsion



Since it’s angle based, we can again apply the analysis 
from Haomiao’s paper, or the alternative from our current 
Lifted Curls paper.
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Lets get to comparisons and results
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Comparisons and Results



I promised we’d get to Discrete Viscous Threads and 
elastic rods, and we’re going to look at that now.

It’s a popular model, so it’s important to compare and 
contrast.

79

[Bergou et al. 2010]



For simplicity, I’ll call it DER.
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[Bergou et al. 2010]



DER has a tangent-based bending energy, which goes to 
infinity at large angles. 
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DER is a Cosserat model that has a per-edge frame. 
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Our model doesn’t have that, and the main thing we lose 
is subsegment twist.
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If the edge twists like a drill bit, our model will miss it. 

This mostly happens when strands are constrained at 
both ends.

But Hair is usually constrained at one end – the scalp. So, 
we’re not too worried about this.
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To summarize, Lifted Curls only uses vertex positions,

DER uses vertices and frames.
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Lifted Curls DER



We use quadratic bending, while DER uses tangent 
bending.
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We use quadratic torsion
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While if you dig through the math, DER’s twisting 
energy is implicitly another tangent function.

Functions with higher non-linearity usually introduce 
stability challenges.

89



To test things out, let’s see what happens when we 
kinematically compress a coil.
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Let’s start small and compress it by 30%. You can barely 
see it.

For all these tests we wanted to see behavior under large 
timesteps, so this is 1/30 of a second, using 3 Newton 
iterations.

We tried a lot of different filtering strategies for DER. No 
filtering, Gauss-Newton, exact filtering, and then Gauss-
Newton but with stretching filtered using our method. 
Remember, most of the stiffness lives in that term 
anyway.
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A bunch of the strategies fail, and some survive. Most 
importantly, ours survives.
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If we double it to 60% compression, all the DER 
strategies fail.
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Just for fun, we compressed our by 99.999%. Still 
recovered. Quadratic energies are super-robust.

To be fair, DER does recover under smaller timesteps. 
But, we found you have to make it 100X to 10,000X 
smaller. When you’re approaching the singularity in the 
tangent function, the solver really has to tiptoe around.
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Instead of compressing a coil, let’s jitter its vertices.
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We jiggled each vertex by 0.5mm, and again, some 
recover, and some fail.
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Push to 2mm, everybody fails but us. Again, you need a 
100X or 100,000X smaller timestep to stabilize DER.
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Just for fun, we jiggled ours by 5mm. It recovered fine.

97



Another test. Let’s straighten a coil out entirely.
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Again, ours bounces right back. The other ones fail. 
Again, you need to dial the timestep back by 100X to 
10,000X before DER stabilizes.
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Since the formulation is entirely vertex-based, you can 
throw it in with existing simulators. For example, here’s a 
bunch of volumetric bunnies, and we threw some hair 
ties on top of them.
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Same shot, no bowl
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The thing we care most about is hair. Everybody seems to 
use a hairball to test their algorithms, though it’s always 
been straight hair.

We’re going to use one too, but for tightly coiled hiar.
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Here’s a hairball with 2000 wisps that we directly 
simulate. Each wisp is then rendered as 100 hairs.

This is all with a really large timestep, 1/30 of a second, 
and 3 Newton iterations. I’ll show you more Newton 
iterations in a second.

Collisions are enabled, so clumps automatically form 
between the wisps.
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This happens in real life. Here’s the Instagram influencer 
Leal Alexander, and you can see the same clumps in her 
hair.
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Here we simulated 4K wisps, and rendered each as 50 
hairs. So, same number of total hairs, but twice the 
number of independent wisps.

At this level, clumps stop forming.
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Finally, 8K wisps, rendered each with 25 hairs. A much 
more “picked out” look.
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This does match real-life. Again here is Leal Alexander 
with the same hair, but she picked it out. Clumps no 
longer form, and the look is fuzzier.

I just showed you 3 Newton iterations, to make the point 
is that it’s stable.
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I just showed you 3 Newton iterations, to make the point 
is that it’s stable.

If you add more iterations, you get more dynamics. 
Here’s the 2K example, but with 12 Newton iterations 
instead of 3
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Here’s the 4K example again
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And here’s the 8K example again.
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Here’s the running times we saw.
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The total running times are here on the right, which 
might seem a little high
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But we’re looking at lots of degrees of freedom – each 
wisp has LOTS of vertices, way more than straight hair.

And, this is not some optimized GPU implementation.

You can take our energy and try to throw it onto the GPU 
or come up with a position-based dynamics formulation. 
Lots of opportunities there.

(next paper only has 81K DoFs)

113



This is a relatively unoptimized CPU implementation, so 
you see the classic 1/3 1/3 1/3 split here between 
collisions, assembly, and solve.

If you want speed, you could take our energy and try to 
throw it onto the GPU or come up with a position-based 
dynamics formulation. Lots of opportunities there.
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Alright, let’s wrap it up.
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Contributions



we’ve presented a new hyperelastic model for tightly 
coiled hair 
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Contributions

•Hyperelastic model for tightly coiled hair



We’ve derived analytic eigensystems for all of its terms
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Contributions

•Hyperelastic model for tightly coiled hair
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And the analysis is generic, and applies to lots of other energies

We even saw it stabilize DVT quite a bit.

Still lots of room for speedup and optimization.
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Contributions

•Hyperelastic model for tightly coiled hair
•Analytic eigensystems for all of its terms
•Analysis is generic, applies to lots of energies



So -- that’s Haomiao and Alvin’s paper.
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And thank you for listening. I’d be happy to take questions now.
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Thank You


