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Figure 1: Four quaternion Julia sets with different target shapes and fractal styles, generated using our method. Images are high-resolution;
zoom in to see detail. The results were obtained orders of magnitude faster than with the state-of-the-art method [Kim15], with similar
quality.

Abstract
We present an efficient new method for computing Mandelbrot-like fractals (Julia sets) that approximate a user-defined shape.
Our algorithm is orders of magnitude faster than previous methods, as it entirely sidesteps the need for a time-consuming
numerical optimization. It is also more robust, succeeding on shapes where previous approaches failed. The key to our approach
is a versor-modulus analysis of fractals that allows us to formulate a novel shape modulus function that directly controls the
broad shape of a Julia set, while keeping fine-grained fractal details intact. Our formulation contains flexible artistic controls
that allow users to seamlessly add fractal detail to desired spatial regions, while transitioning back to the original shape in
others. No previous approach allows Mandelbrot-like details to be “painted” onto meshes.

CCS Concepts
• Computing methodologies → Computer graphics; Shape modeling;

1. Introduction

Julia sets are a geometrically intricate family of fractals that con-
tinuously reveal new details under magnification. Their unique vi-
sual properties have been highlighted in many films over the last
decade, including Big Hero 6 [HRE*15], Doctor Strange [Sey16],
and Annihilation [Fai18]. More broadly, the visual appeal of frac-
tals has been leveraged in Lucy [KFB14], Guardians of the Galaxy
2 [ESHG17] and production VR [SMB*18]. Fractal shapes produce
unique visual structures at coarse and fine scales that are difficult
to replicate with noise-based methods.

However, controlling these coarse- and fine-grained fractal de-
tails remains a significant challenge. Popular applications such as

those for the Mandelbulb [Whi09; Mar19] take a time-consuming
“explorer” approach where the user goes spelunking through fractal
landscapes in the hopes of discovering new shapes. Film production
pipelines hoping to incorporate fractal effects have had to adopt
similar manual-exploration approaches [Gia17; Sey17] or resort to
hand-sculpting generated fractal geometry [Sey16]. The difficulty
of artistically directing of fractals are a well known challenge in
VFX. As observed by one Weta supervisor: The problem is you
can’t control fractals, and filmmaking requires control. [Gia17]

In this paper, we present a fast and flexible new method for di-
rectly generating Julia sets corresponding to a user-desired shape.
Using a new versor-modulus factorization, we show that fine-
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grained fractal detail can be controlled through the versor compo-
nent, and introduce a new shape modulus function to control the
coarse, global shape. Our formulation allows fractal detail to be
added in user-specified regions while seamlessly transitioning back
to the original shape in others. To our knowledge, no prior formu-
lation offers this level of control.

Previous work computed shape-conforming Julia sets using a
time-consuming and numerically brittle optimization process that
required extended precision floating point (see supplement §1,
[Kim15]). Our method is orders of magnitude faster because it by-
passes the optimization stage, is able to compute in standard preci-
sion, and immediately produces fractal versions of input shapes.

Our contributions are as follows:

• A versor-modulus analysis of quaternion Julia sets that reveals
that the coarse-scale details are determined by the modulus, and
the fine-scale details are set by the versor.

• A new shape modulus function that allows direct control of the
overall shape of a Julia set while still maintaining its fractal de-
tails.

• Spatially varying controls that allows fractal detail to be added
in user-specified regions, while seamlessly transitioning back to
the original shape in others.

2. Background and Related Work

2.1. 3D Noise and Surface Texturing

An effective Julia set shape control method would produce geome-
try that resembles some target shape, so it could be broadly grouped
with other surface texturing methods.

Many well-known texturing methods exist, such as hypertextures
[PH89], 3D texels [KK89] or shell maps [PBFJ05], which can be
applied to a surface using standard displacement mapping [Coo84].
However, Julia set-based surface texturing produces detailed struc-
tures across scales, such as the rosette on the dragon’s tail in Fig-
ure 1 or the rings around the tail in Figure 11. Such features lie
outside the characteristic looks generated by commonly used Per-
lin [Per85], Wavelet [CD05] or Gabor [LLD11] noise functions. In
Figure 1, the fractal detail radically changes the connectivity and
genus of the target shape, but the changes are localized to the high-
frequency bands of detail, while the low-frequency characteristics
of the overall shape are preserved. Equivalent looks would be diffi-
cult with existing noise methods.

2.2. Julia Set Preliminaries

Julia sets were first studied over a century ago [Jul18; Fat17], and
became more widely-known when their fractal properties were in-
vestigated and popularized in the 1980s [Man80; DH85; Gle87].

Julia sets are produced by recursively iterating a dynamical map,
and a filled Julia set is the set of spatial points whose magnitude
does not approach infinity upon successive iterations. The Julia set
itself is the boundary of this region. More formally, the filled Ju-
lia set J can be defined in terms of some map f on the complex

numbers:

f(x) : C→ C
f1(x) = f(x) f2(x) = f(f(x)) f3(x) = f(f(f(x))) ...

Set membership of a complex point x ∈ C is then determined by:

J(f) = {x : lim
n→∞

||fn(x)|| ̸→∞}

In practice, some finite maximum iteration count
nmax ∈ N and radius rmax ∈ R are selected. If rmax is
exceeded at any point up to nmax iterations, the point is
labelled as “escaped”, otherwise it is considered to be
within J, i.e. J(f) = {x|¬∃n < nmax : ||fn(x)||> rmax}.
The classic Julia set is computed by running such an
iteration for every point on a grid in the complex plane
and coloring pixels corresponding to set membership
(see right).

While Julia sets were originally defined over the 2D complex
plane, they were extended the computation to 3D by computing a
Julia set over the 4D quaternions, and extracting a 3D slice [Nor82].
Similar to 2D, these sets can be computed using f(x) : H → H,
where x is now a quaternion. Custom methods were later developed
for visualizing these sets [HSK89; HKS90], which then went on to
explore whether they were simply or multiply connected [Har99].

However, the original Julia sets take on abstract forms that, while
visually interesting, do not generally form recognizable shapes. For
many applications, it would be desirable to control the macro-scale
of the Julia set’s shape while still somehow retaining its character-
istic fractal appearance. This creates an inverse problem: can we
find a function whose Julia set resembles some target shape?

2.3. Previous Julia Set Fitting Methods

Lindsey [Lin15] first investigated this question of inverse fitting in
2D, and presented an analytic method for creating rational polyno-
mials whose Julia sets approximate any Jordan curve in the com-
plex plane. However, the method relied heavily on results from
complex analysis that do not generalize easily to 3D.

The QUIJIBO algorithm [Kim15] is a method for controlling Ju-
lia sets that is currently the only known method for solving the
inverse problem in 3D. Our work builds on intuition gained from
analyzing from results from this previous method. We summarize
the method here to facilitate comparisons.

2.3.1. QUIJIBO Algorithm

QUIJIBO [Kim15] solves the inverse problem by performing non-
linear optimization on an very high-order rational function contain-
ing hundreds of roots:

f(x) = eC · (x− t1)
τT1(x− t2)

τT2 ...(x− tt)
τTt

(x−b1)βB1(x−b2)βB2 ...(x−bb)βBb

To form an initial guess, the top polynomial’s roots (t1 through
tt ) and the bottom polynomial’s roots (b1 through bb) are placed
according to a monopole approximation of the target shape’s elec-
trostatic potential. Previous results from 2D analysis ([BD13]) sug-
gested that this could produce a close approximation.
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Given the root positions from this monopole approximation, the
root powers τ, β, T1 . . .Tt and B1 . . .Bb are sent to a non-linear op-
timizer that tries to match the signed distance field of the target
shape to the potential field of the Julia set. This proved to be chal-
lenging optimization problem, as it intrinsically involves a highly
non-linear rational function. Several coarsening and re-weighting
strategies had to be devised to coax the optimization to converge.

This optimization could take hours to days (the maximum re-
ported time was 44 hours), and would fail to converge for certain
shapes. If the optimization converged, a final mesh was extracted
by running Marching Cubes on the scalar field of log(||fn(x)||) for
some finite n. This step was also computationally intensive, be-
cause f(x) often involved numerically sensitive rational functions
that needed to be evaluated in 80-bit precision. However, this stage
could be amortized over a parallel compute cluster, so the reliability
of the non-linear optimization remained the main challenge.

While the QUIJIBO optimization converged for simpler shapes,
it failed on more complicated geometry (see Figure 4). The ex-
tended (80-bit) precision requirement of the Marching Cubes stage
was addressed in subsequent work [KD20], but the problems sur-
rounding the core non-linear optimization remains. Even when the
optimization succeeded, the rational function it outputs resists artis-
tic direction. Small changes to the root’s spatial positions or expo-
nents could completely disintegrate the underlying fractal shape.
We summarize the differences between our algorithm and QUI-
JIBO in Table 1.

We present a method that fits arbitrary shapes to Julia sets with-
out any of these limitations. Our method does not require a non-
linear optimization and instead produces a fractal shape approxi-
mation immediately. We show that our algorithm is more robust
than previous methods, offers uniquely intuitive artistic controls,
and succeeds where prior algorithms failed.

3. A Versor-Modulus Analysis of Julia Sets

We will begin by first analyzing the shapes obtained by the QUI-
JIBO algorithm [Kim15] in order to motivate our design. We can
decompose the output of any quaternion function f(x) :H→H, into
its versor function d(x) and its modulus function r(x) [Nee97]:

r(x) = ∥f(x)∥ d(x) = f(x)
∥f(x)∥

Intuitively, we are factoring each quaternion into its magnitude
(modulus) and direction (versor). We have discovered that this fac-
torization separates the structure (modulus) from the texture (ver-
sor) of the underlying fractal.

Figure 2 shows a 2D slice from a shape obtained using the QUI-
JIBO algorithm. The center plot shows the log of the modulus r(x):
the radius of the 4-sphere onto which x will be projected at the next
iteration. The outline of the Julia set itself is drawn in white. The
plot on the right is an RGB map of the versor field d(x). The overall
structure of the Julia set is already visible in r(x).

The basin of attraction around ∥x∥= 0 and towards ∥x∥=∞ are
also visible, as illustrated on the left of Figure 3. The white circle
lies in a region around the origin that forms a basin of attraction
towards the interior of the Julia set. Once an fi(x) iterate enters

this zone, it can never escape, and will spiral closer to the origin
for all future iterations, guaranteeing membership in J. Similarly,
the black circle lies in a region sufficiently far from the origin that
it forms a basin of attraction away from the Julia set. Iterates will
amplify towards infinity in subsequent iterations, and by definition
not become members of J.

Figure 2: Left: An optimization result from the QUIJIBO code
release [Kim17], using a “tooth” as a target shape. Middle: Mod-
ulus field r(x) as defined in section 3, plotted on a truncated log
scale along the slice shown by the 2D plane on the left. The Julia
set boundary is outlined in white. Right: Versor field d(x) plotted
as RGB along the same slice. While d(x) is a quaternion, it lies
along the ||d(x)|| = 1 simplex, so three colors suffice for visual-
ization; here color encodes the three imaginary components of the
quaternion.

The dynamics near these basins of attraction are almost entirely
independent of d(x) (Figure 2, right). If r(x) is sufficiently small or
large, it dominates the fate of the iterate, and the angular direction
is of little consequence. The cases where d(x) does influence mem-
bership in J is illustrated by the cyan circle on the right of Figure
3. In this case, portions of the circle lie in different super-attracting
regions, and d(x) selects between the two.

Figure 3: Two plots showing r(x) from Figure 2, with arrows from
x to f(x). Each plot shows one x which escapes outside J (black)
and one x which does not (white). Left: two values of x project to
radii where d becomes irrelevant. The white circle lies entirely in
the basin of attraction around ∥x∥ = 0, and the black circle lies
entirely in the basin for ∥x∥=∞. Right: Two values of x project to
the same r but different d, determining membership in J. The cyan
circle does not lie entirely within either basin at 0 or ∞.
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Method Iterated Function Parameters

QUIJIBO p(x) = eC · (x−t1)
τT1 (x−t2)

τT2 ...(x−tt )
τTt

(x−b1)βB1 (x−b2)βB2 ...(x−bb)
βBb

• t1...tn and b1...bn, placed to approximate a target shape’s
electrostatic potential, where n ≈ 300.

• τ, β, T1...Tn and B1...Bn are optimized over hours or days to
minimize a surface-based objective function.

• Changes to any of the n ≈ 300 parameters can completely
dissolve the overall shape

Shape Modulus (Ours) p(x) = eα·(φ(x)+β) ·d(x)

• d(x) can be any quaternion function; it does not influence the
overall shape of the Julia set

• α and β provide an artistically intuitive 2D parameter space,
yielding a family of target-fitting Julia sets.

Table 1: Summary of our method compared to QUIJIBO [Kim15].

Our key observation is that while r(x) does not entirely deter-
mine every detail of the Julia set, it does define its overall shape. We
leverage this intuition to design a version of r(x) that has knowl-
edge of the user-defined target shape.

3.1. A Shape-Modulus Function

Any quaternion polynomial p(x) can be expressed as a versor and
modulus:

p(x) = r(x) ·d(x) = ∥p(x)∥ · p(x)
∥p(x)∥ . (1)

We instead define r̂(x), a new shape modulus function that contains
shape information, while leaving the versor function the same:

r̂(x) = eα·(φ(x)+β) d(x) = p(x)
||p(x)|| . (2)

Our new dynamical map then becomes:

f(x) = r̂(x) ·d(x) (3)

Here, p(x) is some rational quaternion function, φ(x) is a signed
distance field (SDF) of the target surface, and α and β are con-
trol variables. The iterations occur in H, while φ(x) is only defined
over R3, so we discard one quaternion component when indexing
into φ, effectively extruding the SDF along the discarded axis. For
the examples presented here, the third complex coordinate (k) was
discarded, but choosing any other coordinate yielded qualitatively
similar results. To avoid this extrusion becoming visible in the fi-
nal result, a 3D slice transverse to the discarded axis is selected for
meshing.

We designed r̂(x) to place the ∥x∥ = 0 super-attracting basin
within the target shape, the ∥x∥=∞ basin outside the target shape,
and to smoothly transition between the two so that the versor field
d(x) remains relevant. The target shape then overlaps the region
where fractal details appear.

The prior formulation [Kim15] had to carefully select the root
positions of the rational function p(x) and then run a non-linear
optimization over the course of hours or days. Our new formula-
tion requires neither of these steps. We have found that almost any

function p(x) suffices to produce a fractal shape approximation (see
§3.3.2 for further discussion). Despite this apparent simplicity, Fig-
ure 4 shows our formulation succeeding on inputs where the prior
algorithm failed. Our algorithm found an armadillo fractal in 2.9
seconds, whereas QUIJIBO optimized for 4.5 hours before failing.
The dragon was found in 5.1 seconds, while QUIJIBO failed after
3.5 hours. From this perspective, our algorithm is respectively over
5600× and 2500× faster than the previous approach.

Figure 4: Top: Failed Julia set fits included in the QUIJIBO code
release [Kim17]. Bottom: Our method successfully fits both shapes,
and completed up to 5600× faster.
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Figure 5: A bunny-shaped Julia set with a thick shell of fractal de-
tail. The origin of the dynamical system has been translated, caus-
ing the interior of the set to erode.

3.2. Control Parameters

The α and β in Equation 2 allow for fine-grained control of the Julia
set (Figure 6). They respectively control the steepness and position
of r̂(x) with respect to the shape φ(x), and enable high-level control
of the shell around the target shape where fractal details can appear
(Figure 8). We call α the thinness parameter, as larger α yields
progressively thinner shells of fractal detail around the target shape.
We call β the offset parameter, as it controls the distance from the
target surface that fractal details will appear, effectively expanding
or contracting the centerline of the shell.

These parameters do not solely define the thickness and position
of the shell of detail, as the geometry of the target shape and the
scale and origin of the coordinate system are also influential factors,
but they can be used to tune the thickness and position of the shell.
Increasing α always yields a thinner shell, and increasing β always
expands the shell outwards.

We have found that these two controls are highly effective for
designing custom Julia sets. They allow a user to decide which de-
tails from the target shape can be eroded away by fractal detail, and
provide a wide variety of overall fractal appearances. Since α and
β create continuous changes in the output shape, they can be spa-
tially varied to smoothly “dial in” fractal detail on different parts of
the target shape without creating visual discontinuities (Figures 7
and 13). This results in intuitive artistic controls: more fractal de-
tail can be dialed in to a specific region by assigning it a small α,
while thin features can be preserved in other regions by setting β to
be large. Prior methods [Kim15; Lin15] do not provide controls of
this kind; any adjustments to the results cause wildly unpredictable
and counter-intuitive changes in overall shape.

One desirable feature of the QUIJIBO approach is that translat-
ing the optimized polynomial roots “erodes” the Julia set from the
inside outward and creates intricate new details. Our formulation
produces a similar effect (see Figure 5) when translating the origin
of the dynamical system. This additional control allows for further
exploration of possible textures and looks.

Figure 6: Two views of the “Breakfaster office chair” [Cro22] Ju-
lia sets generated with the same φ and d, but different α and β.
The α parameter controls the thickness of the shell where fractal
detail can appear, and β controls the position of that shell relative
to the target surface. Left: Initial values for α and β yield a chair
with a thin shell of fractal detail around the surface. Middle: De-
creasing α makes the shell thicker, adding more fractal detail, but
eroding the legs and armrests. Right: Increasing β moves the shell
outwards, ensuring that the thin legs, armrests and adjustment han-
dle are fully captured.

3.3. Discussion

3.3.1. Modulus Function

To better understand the effect of our new modulus function r̂(x),
we can examine its behavior under iteration while making no as-
sumptions about the versor function. Instead, we can treat d(x) as
an unknown function that returns a unit vector in any direction. In
this case, we can interpret r̂(x) as altering the probability that an
iterate will fall into the ∥x∥= 0 or ∥x∥=∞ basins of attraction.

If we assume that α is sufficiently large, and that the origin lies
inside the target shape, our r̂(x) ensures that points far enough in-
side the target object, with a sufficiently negative φ(x), will be cap-
tured by the ∥x∥ = 0 basin. Conversely, it ensures that points far
enough outside the target object, with a sufficiently positive φ(x),
will be captured by the ∥x∥ = ∞ basin. For points between these
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Figure 7: Four dragon-shaped Julia sets with spatially-varying α. The leftmost has a constant α = 10, the rightmost set has a constant
α = 300, and the two in the middle show a spatially varying α that transitions between them. The effect of α is non-linear, so we obtained a
smooth transition by using a cubic interpolant.

two extremes, where r̂(x) guarantees neither inclusion nor exclu-
sion, φ(x) can be used to estimate the likelihood of set member-
ship. Specifically, for a given target shape’s φ(x), it is possible to
compute the relationship between the radius of an origin-centered
sphere and the average φ(x) along surface of that sphere. We show
a 2D case in Figure 8.

Due to the structure of r̂(x), and again assuming that the origin
lies inside the target shape, smaller values of r̂(x) mean that the
iterate is more likely to fall into the ∥x∥= 0 basin, while larger val-
ues are biased towards the ∥x∥=∞ basin. The overall shape of the
distance-radius curve in Figure 8 determines the spatial distribution
of fractal detail in the final Julia set.

Figure 8: Top: Average of 1000 2D Julia sets generated with our
technique for two target shapes. Each used randomly-generated
d(x). Darker regions correspond to points more likely to be inside
J. Black areas are inside J, and white areas are outside. Bottom:
With the origin inside the target shape, a plot of average φ(x) along
a circle’s circumference over its radius. Sufficiently small or large
values of φ(x) will dictate set membership, so J will match the tar-
get shape.

3.3.2. Versor Function

Though r̂(x) determines the overall shape of the Julia set, d(x) de-
termines the small-scale character of the fractal detail. As specified
in Equation 2, all of our Julia sets were computed by normalizing
the output of a quaternion polynomial p(x). This was done to facili-
tate comparisons with previous methods, but we have found that for
our purposes any d(x) will suffice. The frequency of details in the
versor function (Figs. 2, 9, 10) directly determines the frequency
of fractal detail in the final Julia set.

This flexibility in d(x) allows a wide variety of fractal appear-
ances to be generated for a single target shape (Figure 12). Differ-
ent polynomials introduce different features, such as spiky ridges,
swirls, and fibrous textures, among others. These bunny fractals
were found in 55.1 seconds, while QUIJIBO algorithm took 43
hours, yielding a 2800× speedup.

Any d(x) that produces continuous and turbulent values will pro-
duce interesting fractal detail. For most shapes, laying down poly-
nomial roots randomly inside a bounding box of the target shape
produced an acceptable d(x). For each of our examples, 3 to 5 ran-
dom polynomials were generated and the most visually interesting
result was selected.

The space of possible versor functions and corresponding tex-
tures is difficult to characterize completely, but we have observed
some tendencies. For Figs. 1 center left, 9, and 11, the polynomial
roots were clustered tightly inside the target shape. In other ex-
amples with more regular, turbulent textures, the roots were more
evenly distributed in space. Altering the positions of the polynomial
roots in the versor function seems to smoothly deform the texture
of the fractal while the large-scale shape remains constant. Thus,
similar roots in d(x) yield similar fractal textures.

Additionally, using the same d(x) for two different target shapes
allows a user to transfer the qualitative fractal texture from one Julia
set result to another, such that similar fractal details appear in sim-
ilar spatial locations. Even if the target shapes are entirely disjoint,
they still produce qualitatively similar fractal appearances (Figure
11). This property allows a user to try out many texture by gener-
ating many d(x). If a desirable texture is found, it can be applied
across multiple shapes.
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Figure 9: Left: Bunny-shaped Julia set generated using our
method, Right: As in Fig. 2, RGB plot of versor function d(x) along
the slice shown at left. Circular rings are visible both in d(x) and
the final Julia set.

Figure 10: Left: Target hand shape. Middle : As in Figure 2, the
versor function d(x) is plotted using RGB along the surface of the
target mesh. The overall texture of the Julia set is already visible in
d(x). Right: A Julia set generated using these φ(x) and d(x).

3.4. Performance

Our method bypasses the lengthy non-linear optimization stage of
previous approaches [Kim15], and only needs to run Marching
Cubes to compute the final triangles of f(x) from Equation 3. This
is trivially parallelizable, allowing for short wall-clock generation
times if enough parallel computation power is available. All geom-
etry computation was run in parallel on a compute cluster using one
core per job, split across several nodes. The cores used were Intel
Xeon 8268, 6240, and E5-2660 v3 and v4 CPUs, with clock speeds
ranging from 2.0-2.9 GHz. Parameters and timings are in Table 2.

Similar to QUIJIBO [Kim15], Marching Cubes was performed
on the log(||fn(x)||) field and a bisection search was performed
along each grid edge to refine the final mesh. The examples here
were computed on the CPU, but because this method only requires
standard precision it would be well-suited for running on a GPU.

Figure 11: Two Julia sets generated with different target shapes
but using the same polynomial in in d(x). The two sets have very
different overall shapes, but share a similar ridged appearance.

Figure 12: Julia sets generated with the same r(x) but different
d(x). The overall shape remains constant, but the fractal detail dif-
fers. These fractals were found in 55.1 seconds, over 2800× faster
than with previous methods.

For example, previous CUDA implementations [KD20] could eas-
ily be adapted to our formulation.

4. Limitations and Future Work

We have presented a versor-modulus analysis and shape modulus
function for generating Julia sets to fit arbitrary target shapes. It is
both faster and more robust than previous methods. This opens the
door to efficiently exploring this style of geometry, and there are
many avenues for improvement and future research.

Many design decisions made during the development of this al-
gorithm likely have effective alternatives. While we have had suc-
cess generating d(x) using quaternion polynomials, in principle any
map or vector field could be used. Especially desirable would be a
means of choosing a d(x) that yields a specific type of fractal detail.
Investigating the specific dynamics of d(x) fields could yield even
greater control over the fractal character of the generated shapes.

When setting control parameters α and β, it is relatively straight-
forward to guess good initial values and then fine-tune to achieve a
desired visual quality. However, it should also be possible to ana-
lyze the target shape and directly determine parameters to achieve
shell thicknesses and positions to achieve a specific look. Under this
formulation, the shape is highly predetermined before computation
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Table 2: Marching Cubes performance. Triangles were computed on a grid resolution of 16003 for all examples. Each target shape used a
different quaternion polynomial generated by placing roots with random powers inside the target shape’s bounding box. Jobs were divided
spatially, so each had varying amounts of geometry to compute. Thus, wall-clock time is not exactly equal to the total time divided by the
number of cores. All times are in hour:minutes:seconds.

Fig. Example p(x) degree α β Triangles Total cores CPU time Wall-clock time
1 Dragon (gradient α, avg. frame) 40 10-300 0 26.5M 64 10:05:03 1:21:11
7 Dragon (constant α) 40 10 0 53.5M 64 41:58:28 2:01:57
1 Armadillo 40 40 0.05 160.3M 64 70:40:48 4:20:46
6 Chair (varying α, β, avg. frame) 10 1-4 1-2 4.23M 512 19:41:33 0:05:37
1 Hand 40 90 0.02 12.7M 512 17:00:23 0:05:27
1 Bunny 10 6 0 355.8M 512 62:40:51 1:01:45

Figure 13: Julia set of a bunny with a thin shell of fractal detail
only along the body via a spatially-varying α. As in Fig. 7, a cubic
interpolant is used on α to create a smooth visual transition.

even begins, so there may be a more optimal strategy for generat-
ing the final triangles than vanilla Marching Cubes. Each iteration
could also be optimized further by detecting additional basins of at-
traction, and terminating computation when an iterate enters these
regions.
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