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ig. 1. Our framework turns infinite energies into finite ones, even in the presence of fold-overs, by re-expressing distortion in terms of shifted singular val-

es. We can minimise popular flip-preventing distortion energies over non-injective domains at speeds competitive with locally injective methods. We apply

ur algorithm to the Symmetric Dirichlet energy on folded initial states, on both free (left) and fixed (right) boundary surface parametrisation problems. 

e present a geometric optimisation framework that can recover fold-over 

ree maps from non-injective initial states using popular flip-preventing 

istortion energies. Since flip-preventing energies are infinite for folded 

onfigurations, we propose a new regularisation scheme that shifts the sin- 

ular values of the deformation gradient. This allow us to re-use many ex- 

sting algorithms, especially locally injective methods for initially folded 

aps. Our regularisation is suitable for both singular value- and invariant- 

ased formulations, and systematically contributes multiple stabilisers to 

he Hessian. In contrast to proxy-based techniques, we maintain second- 

rder convergence. Compact expressions for the energy eigensystems can 

e obtained for our extended stretch invariants, enabling the use of fast 

rojected Newton solvers. Although spectral shifting in general has no 

heoretical guarantees that the global minimum is an injection, extensive 

xperiments show that our framework is fast and extremely robust in prac- 

ice, and capable of generating high-quality maps from severely distorted, 

egenerate and folded initialisations. 
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1 INTRODUCTION 

Generating fold-over free maps is a common goal in geometry pro-

cessing and physical simulation. Nonlinear techniques for generat- 

ing locally injective maps often require a valid starting point (such

as a Tutte [ 1963 ] embedding) as many popular distortion ener-

gies become infinite if the initial domain is not locally injective.

Such energies have been studied in continuum mechanics since

the foundational work of Ball [ 1976 , 1981 , 1983 ] on invertibility

theorems. 

Coercivity (i.e., barriers) is a key concept in flip-preventing ener-

gies which dictates that the energy should go to infinity when the

map inverts [Hartmann and Neff 2003 ]. A series of recent works in

computer graphics have proposed such barrier energies [Fu et al.

2015 ; Rabinovich et al. 2017 ; Schüller et al. 2013 ; Smith and Schae-

fer 2015 ], while in computational physics, the topic of recover-

ing local injectivity has been studied since the work of Winslow

[ 1966 ] and its variational formulation proposed later in Brackbill

and Saltzman [ 1982 ]. We refer the reader to Garanzha et al. [ 2021a ]

for a historical overview and Fu et al. [ 2021 ] for a detailed survey.

In this paper, we propose an optimisation framework for gen-

erating fold-over free mappings using popular rotation invariant 

flip-preventing energies, even when the initial domain is non-

injective or degenerate. Our work uses a continuum mechanics

approach to introduce the following contributions: 

• A regularisation technique based on shifted singular val- 

ues that yields a simple, consistent and general formulation.
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• Compact eigensystems for regularised energy Hessians 

which can be embedded into fast second-order solvers, using 

extended, regularised stretch invariants [Smith et al. 2019 ] 

with a tailor-made optimisation scheme . 

• Between 1 . 43 × to 12 . 9 × mean speedups over existing 

methods on a large-scale benchmark. 

More specifically, we solve for the regularisation parameter ahead 

of minimisation (in an outer loop; see Algorithm 2 ) and run a se- 

ries of Projected Newton (PN) steps that make use of energy 

eigensystems. Once the map is repaired, our workflow reduces to 

well-known locally injective methods. This property then enables 

the re-use of established techniques for tackling global injectiv- 

ity, while still starting from folded configurations (see Figure 4 ). 

While there are no theoretical guarantees that the global minimum 

of the energy corresponds to an inversion-free map, our frame- 

work passes large-scale datasets with up to 100% success rate. To 

aid reproducibility, we provide kernel computation code in the 

supplement. 

2 RELATED WORK 

2.1 Problem Statement 

To facilitate our discussion in the next section, we will first 

articulate the problem from a mechanics perspective [Bonet et al. 

2016b ]. Given a mesh of nodes V and elements T , potentially 

containing fold-overs, our goal is to minimise energies with 

barriers such that 1 

Π( x ∗) = min 

x 

∫ 

Ω0 

D ( F ) d Ω (1a) 

J = det F > 0 (1b) 

where Π is the total potential energy of the system, x is the vertex 

positions in the mesh, x ∗ the optimal solution, F the deformation 

gradient tensor, D ( F ) the distortion energy density function, and J
the determinant (also known as the Jacobian). Second-order meth- 

ods require both first and second derivatives of the integral in ( 1a ): 

DΠ[ δu ] = 

∫ 

Ω0 

∂D ( F ) 

∂ F 
: ∇ w 

δu d Ω (2a) 

D 

2 Π[ δu , Δu ] = 

∫ 

Ω0 

∇ w 

Δu : 
∂D 

2 ( F ) 

∂ F ∂ F 
: ∇ w 

δu d Ω (2b) 

where : denotes the inner product of matrices ( A : B = tr ( A 

T B )), 
∇ w 

is the gradient operator with respect to a desired domain 

(such as the initial mesh) and δu and Δu are finite element trial 

and test functions. The first term in integrand ( 2a ) is the gradient 

of energy, also called the first Piola-Kirchhoff stress tensor 

(PK1) , which we express as 

P = 
∂D ( F ) 

∂ F 
. (3) 

The middle term in integrand ( 2b ) is the Hessian of energy, which 

we denote as 

H = 
∂D 

2 ( F ) 

∂ F ∂ F 
. (4) 

2.2 Inversion-free Mappings 

In graphics, methods for generating inversion-free mappings in-

clude Tutte [ 1963 ], Bounded Distortion (BD and LBD) [Aiger-

man and Lipman 2013 ; Kovalsky et al. 2015 ], extremal quasi-

conformal mapping [Weber et al. 2012 ], Simplex Assembly

(SA) [Fu and Liu 2016 ], Adaptive Block Coordinate Descent

(ABCD) [Naitsat et al. 2020 ], Total Lifted Content (TLC) [Du

et al. 2020a ] and Fold-over Free Maps (FFM) [Garanzha et al.

2021a ; Su et al. 2019 ]. Progressive embeddings and intrinsic trian-

gulations have also been successfully applied in 2D (parametrisa-

tion) contexts [Campen et al. 2021 ; Gillespie et al. 2021 ; Liu et al.

2018 ; Shen et al. 2019 ], which relax the requirements on the in-

put triangulation to guarantee finding a discrete, locally injective

map. To our knowledge, TLC and FFM are the only frameworks

that pass the whole local injectivity benchmark of Du et al. [ 2020b ]

in 2D and 3D. 

To guarantee inversion-free maps, Equation ( 1b ) must be satis-

fied, so one common approach is to perform an unconstrained min-

imisation of barrier energies that implicitly encode this constraint.

However, the barrier prevents these energies from being applied

when the initialisation contains fold-overs ( J < 0 ). Consequently,

state-of-the-art algorithms either lift the space of simplices to a

logical space by minimising some simple field [Du et al. 2020a ],

or consider a metric that bounds the amount of distortion [Aiger-

man and Lipman 2013 ; Fu and Liu 2016 ; Kovalsky et al. 2015 ]. Most

of these approaches change the metric (transformation matrix) by

employing an auxiliary strictly non-degenerate map. 

Minimising barrier energies with fold-overs without changing

the triangulation/tetrahedralisation relies on either filtered folded

elements [Naitsat et al. 2020 ] or regularised Jacobians [Garanzha

et al. 2021a ]. Filtering then requires adding energies for inverted

elements that can unnecessarily compete with the primary distor-

tion energy. Alternatively, Jacobian regularisation allows the same

energy to be used, but leads to non-convex energies and inconsis-

tent treatment of the map’s metric, which implies that the reg-

ularised Jacobian cannot be retrieved from the product of singu-

lar values of the deformation gradient. This complicates the use

of state-of-the-art second-order approaches [Shtengel et al. 2017 ;

Smith et al. 2019 ], which exploit the structure of the deformation

gradient. 

Invertible distortion energies have also been studied in simula-

tion [Irving et al. 2004 ; Smith et al. 2018 ; Stomakhin et al. 2012 ], but

these formulations tackle a different problem. They are neither de-

signed to solve inversion-free mappings nor are they a substitute

for locally injective methods (further discussion in Section 5.8 ). 

2.3 Energy Minimisation 

Minimising barrier energies typically require stabilisation of the

Hessian to make them semi-definite positive. We use the term sta-

bilisation here as opposed to regularisation because Hessian sta-

bilisation is distinct from Jacobian regularisation. The former is

necessary to obtain a descent direction while the latter makes
1 Unless otherwise stated, lower case bold letters a denote vectors, upper case bold 
letters A are second order tensors (matrices), and blackboard bold letters A are fourth 
order tensors (matrix of matrices). 
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a barrier energy finite under fold-overs. To overcome the prob- 

lem of Hessian indefiniteness, one can clamp the negative eigen- 

values of the Hessian [Fu and Liu 2016 ]. Alternatively, a proxy 

Hessian such as a Laplacian [Gargallo-Peiró et al. 2015 ], or a 
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Fig. 2. R 

d → R 

d mapping (left) d = 2 (right) d = 3 , between a parametric element ΩN 

in the natural coordinates, auxiliary element ΩD 

, and the physical 

element Ω0 . The mapping of interest here is from the desired shape to the final physical element whose diffeomorphism can be established as a composition 

ϕ = ϕP ◦ ϕ−1 
D 

. Subsequent deformation of the domain is computed in the moving frame Ω in an Arbitrary Lagrangian Eulerian (ALE) fashion. In case the 

desired element is the rest configuration, we recover the standard Lagrangian formulation. 
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inearised version of the same Hessian [Poya et al. 2016 ] can be 

sed/added, or a semidefinite-indefinite decomposition can be per- 

ormed [Garanzha et al. 2021a ]. 

Projected Newton (PN) [Stomakhin et al. 2012 ; Teran et al. 

005 ] is not a good candidate for certain cases of untangling, as it 

an lead to damped convergence, and coupled with a non-filtered 

ine search, can even stall. Over 10,000 rounds of L-BFGS or Pro- 

ected Newton are commonly needed [Du et al. 2020a ; Garanzha 

t al. 2021a ]. Alternatively, Quasi-Newton (QN) methods can 

mooth away barrier terms and cause the optimisation to con- 

erge to the incorrect (still folded) minima. As reported in Du et al. 

 2020a ], the QN method in TLC can fail to recover local injectivity 

n moderately complex problems, even though the energy is guar- 

nteed to achieve its global minimum at a locally injective state. 

 OUR REGULARISATION APPROACH 

e will present our overall approach by starting with continuum 

echanics preliminaries (Section 3.1 ), and present our core reg- 

larisation scheme (Section 3.2 ). From this, we will show how to 

uild a set of regularised stretch invariants (Section 3.3 ), which 

llow us to derive compact expressions for their Hessians. After 

escribing a strategy for setting a key regularisation parameter 

 β) in Section 3.4 , we will apply our regularisation scheme to sev- 

ral common energies (Section 3.5 ), and end with a brief discussion 

Section 3.6 ). 

.1 Continuum Mechanics Preliminaries 

n the context of mechanics, the mapping between a mesh with 

nverted elements and an inversion-free mesh [Aigerman and Lip- 

an 2013 ; Du et al. 2020a ; Fu and Liu 2016 ; Garanzha et al. 2021a ; 

ovalsky et al. 2015 ; Su et al. 2019 ] can be formalised as the fol- 

owing Arbitrary-Lagrangian-Eulerian (ALE) scheme. 

Consider an element in the auxiliary (“ideal”) configuration ΩD 

, 

ith position vectors w and a desired shape and size. A corre- 

ponding element Ω0 in the physical configuration has position 

ectors y . This element undergoes motion to arrive at the final 

physical configuration Ω, denoted with position vectors x [Bonet 

et al. 2016b ]. 

To measure distortion we consider the affine mapping ϕ, from

ΩD 

to Ω (see Figure 2 ). This can be decomposed into ϕD 

: ΩN 

→
ΩD 

from the natural element ΩN 

to the auxiliary element ΩD 

, 

and ϕP : ΩN 

→ Ω0 , from the natural element ΩN 

to the physical

element Ω0 . Thus, ϕ can be determined by the composition ϕ =
ϕP ◦ ϕ−1 

D 

. 

Following nonlinear mechanics [Bonet et al. 2016b ], the fi-

bre map transforms an edge between an auxiliary and physical

element: 

F = ∇ w 

x = ( ∇ ξx ) ( ∇ ξw ) −T . (5) 

The domain ΩD 

can be a single element, a polygon soup, or a fully

conformal mesh. In the case of a conformal mesh, F is the defor-

mation gradient tensor F = F y , where w = y is the position vector

of the initial configuration. 

Following Bonet et al. [ 2015 , 2016a ] the three fundamental dis-

tortion measures are F (edge map), its cofactor H (area map) and 

its determinant (volume map) such that (see Figure 3 ) 

F = ∇ w 

x , H = cof F = J F −T = 
1 

2 
F × F , J = det F , (6) 

where × is the tensor cross product between two second order ten-

sors expressed as [ A ×A ] i I = E i jk E I J K 

A j J B kK 

where E is the

third order Levi-Civita tensor [de Boer 1982 ]. Furthermore, F ad-

mits a left polar decomposition 

F = U ΣV T = RS , (7) 

into a rotation tensor R = U V T and a stretch tensor S = V ΣV T .
Here, U , Σ and V are the tensors from the signed singular value

decomposition (SSVD) of F [Irving et al. 2004 ; Kovalsky et al.

2015 ]. 

3.2 Regularisation of F 

We will now regularise the deformation gradient tensor F , which

in turn will allow us to formulate regularised invariants which we

can then use to regularise arbitrary barrier energies. Recall that
AC
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Fig. 3. Mapping a target to a source: the deformation gradient F maps 

edges (white) from the target to source mesh, its cofactor H maps areas 

(green) and its determinant J maps volumes (red). 

Fig. 4. An inversion-free but locally non-injective mapping. The map in the 

middle is self-intersecting (not globally injective) and overwound around 

the mid-vertex (sum of angles > 2 π ) (not locally injective) [Lipman 2014 ; 

Weber and Zorin 2014 ]. Our framework allows re-use of existing locally- 

 

 

a tensor invariant (e.g. the determinant) is a scalar function of a 

tensor that remains unchanged under a basis change or a rotation 

of the target frame. We use the subscript r to denote a regularised 

quantity, e.g. F r or σr i . We regularise F by spectrally shifting its 

signed singular values: 

F r = U ( Σ + Σs ) V 
T = U Σr V 

T (8a) 

with σr i = σi + β i = 1 , 2 , 3 (8b) 

s . t . det F r > 0 . (8c) 

Above, Σs = βI is a strictly positive definite regularisation ten- 

sor. The tensor Σr then has a smallest signed singular value of at 

least σi + β ≥ ϵ where ϵ is a small positive number that we iter- 

atively decrease over the course of optimisation (see ϵk in Algo- 

rithm 2 ). We set ϵ = 10 −6 as the minimum value. 

We consider β a constant during minimisation; this assump- 

tion is discussed extensively in Section 3.4 . We could alternatively 

regularise only one signed singular value using the convention 

( sign (σ3 ) < 0 ) [Irving et al. 2004 ], but such an approach prohibits 

the derivation of generic regularised energies. The complexity of 

the expressions becomes unwieldy [Stomakhin et al. 2012 ], as reg- 

ularisation in one principal direction introduces anisotropy into 

isotropic energies. Geometrically, regularising F scales-up the de- 

formation metric i.e., increases the Jacobian (volume ratio), edge 

length, and area ratios (see Figure 3 ). However, as soon as fold- 

overs are repaired, we fall back to the original metric. 

3.3 Regularisation of Stretch Invariants 

We can now use the regularised deformation gradient F r to for- 

mulate regularised stretch invariants. We first express an arbitrary 

distortion energy D in terms of an extended set of stretch tensor 

invariants: 

D ( F ) = ˆ D (I F , I I F , I H 

, I I H 

, J ) (9) 

with the following definitions for invariants in 3D and 2D 

Invariants in 3D Invariants in 2D 

I F = σ1 + σ2 + σ3 

I I F = σ
2 
1 + σ

2 
2 + σ

2 
3 

I H 

= σ1 σ2 + σ1 σ3 + σ2 σ3 

I I H 

= σ 2 
1 σ

2 
2 + σ

2 
1 σ

2 
3 + σ

2 
2 σ

2 
3 

J = σ1 σ2 σ3 

I F = σ1 + σ2 

I I F = σ
2 
1 + σ

2 
2 

J = σ1 σ2 

(10) 

injective methods on folded maps. Result on the right is obtained with

our regularised Symmetric Dirichlet energy (RSD) and contact penalties

on the boundary. More results in Figure 14 . 

Two additional cofactor invariants, I H 

and I I H 

, are introduced on

top of those from Smith et al. [ 2019 ], and are “cross” terms that

model area distortion in 3D (see Figure 3 ). They are redundant in

2D, as I H 

= I F = σ1 + σ2 and I I H 

= I I F = σ
2 
1 + σ

2 
2 , but in 3D they

can be expressed as 

I H 

= 
1 

2 
(I 2 F − I I F ) area-rotation in 3D (11a)

I I H 

= I 2 H 

− 2 I F J area-preservation in 3D (11b)

We discuss these two cofactor invariants further in Section 3.6 . 

Using Equation ( 8 ), we can now formulate a set of regularised

invariants, 

Regularised stretch tensor invariants 

I F r = I F + dβ
II F r = I I F + 2 βI F + dβ

2 

I H r 
= I H 

+ 2 βI F + 3 β2 

I I H r 
= I I H 

+ 2 β (I F I I F − I I I F ) + 2 β2 I 2 
F 
+ 4 β3 I F + 3 β4 

J r = 

{ 
J + βI F + β

2 2D 

J + βI H 

+ β2 I F + β
3 3D 

(12)

where I I I F = σ
3 
1 + σ

3 
2 + σ

3 
3 is an auxiliary invariant. 

These invariants can be plugged in to any existing distortion en-

ergy to yield a regularised counterpart. The gradients and Hessian

of these regularised invariants, as well as the exact stabilisers that

they contribute to the Hessian, are given in the supplement. Crit-

ically, our choice of invariants allows us to derive compact eigen-

systems for the regularised energy Hessians. 

3.4 Finding the Regulariser, β

The decision to regularise using shifted singular values can seem

empirical. However, we will show that all state-of-the-art ap-

proaches, including TLC [Du et al. 2020a ], FFM [Garanzha et al.

2021a ] and ABCD [Naitsat et al. 2020 ] can be understood as simi-

lar regularisers. Our scheme will then combine the merits of these

approaches. 

3.4.1 State-of-the-art Approaches. We start with TLC [Du et al.

2020a ], where the value of regulariser emerges from a strictly non-

degenerate (lifted) transformation. The regulariser is part of the
ACM Transactions on Graphics, Vol. 42, No. 3, Article 29. Publication date: April 2023. 
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Fig. 5. Comparison of our framework with FFM [Garanzha et al. 2021a ] for two seamless surface parametrisation problems. The left contains 87,984 

triangles 87,824 and 27 invalid elements and the right has 87,824 and 31 invalid elements. We also implemented the modified element-wise SPD Hessian 

from Garanzha et al. [ 2021a ]. Our regularisation of MIPS energy achieved the same quality as FFM but was almost 5X faster . Modified-FFM almost 

degraded to a first order in subsequent rounds of minimisation but overall was faster than FFM (L-BFGS). Convergence plots are only for the first round of 

minimisation. 
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In contrast, FFM [Garanzha et al. 2021a ] performs a penalty- 

tyle regularisation of J such that 

J r (J ) = 
1 

2 

( 
J +

√ 

J 2 + δ2 

) 
(13) 

or every element for which J < 0 . The δ is a positive constant 

hat typically encodes the minimum Jacobian value over the entire 

esh. This approach allows the same energy to be used for folded 

lements, but introduces metric inconsistency. 2 This inconsistency 

mplies that: (a) J r does not correspond to the product of singular 

alues of any metric ( F or F r ) and (b) results in non-convex ener- 

ies, even when applied to convex energies. Moreover, it becomes 

mpossibles to formulate the problem in terms of singular values 

nd obtain Hessian eigensystems. Our regularised invariants do 

ot suffer from these problems. 

Finally, ABCD [Naitsat et al. 2020 ] considers a separate flip term 

o modify non-positive Jacobians, which is then used in conjunc- 

ion with a desired distortion energy: 

J r (J ) = 
d−1 ∏ 

i 

σi δ , (14) 

here negative Jacobians are replaced with a positive constant δ . 

3.4.2 Our Approach. We can combine the strengths of the 

forementioned approaches. In general, given a regularised Jaco- 

ian of, e.g. Equations ( 13 ) or ( 14 ), we can solve the last line in 

quation ( 12 ) for β . This allows for both Jacobian and singular- 

alue regularisations to be embedded into a unified approach (see 

lgorithm 2 ). 

In 2D, this amounts to solving a quadratic equation ( (σ1 +

) (σ2 + β ) = J r ), and a cubic in 3D ( (σ1 + β ) (σ2 + β ) (σ3 + β ) = 
J r ). This is achieved by polynomial root finding on Line 12 of 

lgorithm 1 . 

Alternatively, β can be computed for every element, since the 

ast line of Equation ( 12 ) can be solved for β analytically. In 2D, 

ALGORITHM 1 : Compute β using root finding in n D 

1: procedure ComputeBeta ( V , T , J min , δ ) � Used within Algorithm 2

2: β ← − inf 

3: for T ∈ T do 

4: Compute invariants I F , I H 

, J � ( 10 )

5: Compute J r � ( 13 ) or ( 14 ) 

6: Compute flip-penalty κ ← J r − J min 

7: if d = 2 then 

8: polyCoeffs ← [1 , I F , −κ] 

9: else if d = 3 then 

10: polyCoeffs ← [1 , I F , I H 

, −κ] 

11: end if 

12: β ← max ( β , max ( FindRoots ( polyCoeffs ))) 
13: end for 

14: return β

15: end procedure 

we obtain β = 1 
2 (−I F +

√ 

I 2 
F 
+ 4 (J r − J ) ), which is always positive

and can be back-substituted to carry out the energy derivatives. 

We have now fully parametrised over β , where β can originate

from any kind of constraint, not just those described here. In con-

trast to Garanzha et al. [ 2021a ], a constant β in 2D amounts to a

linear transform of a standard energy into a regularised energy

(note that, I F is linear in F and has SPD Hessian), and linear trans-

forms preserve convexity. With this set of regularised invariants,

we have established a consistent way of expressing infinite ener-

gies over injective, non-injective and degenerate mappings. 

3.5 Regularised Energies 

We can now regularise several well-known distortion energies 

and give explicit expressions for their eigensystems. As men-

tioned, we can either pre-compute β ahead of minimisation or

re-substitute its analytical form and compute energy derivatives. 

The latter is particularly useful in 2D energies such as MIPS
 Metric consistency demands that F and any subsequent derived quantity should also 
e regularised, not just J . 

o

p

l
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r Symmetric Dirichlet (SD) where β does not explicitly ap- 

ear in the energy (c.f. Table 1 ), and only the Jacobian regu- 

ariser δ from Equations ( 13 ) or ( 14 ) are needed for a consistent 
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Table 1. Regularised Energy ( ˆ D ), Gradient ( P ), and Hessian Eigensystem (Four λi s) for Regularised MIPS (RMIPS), Regularised Symmetric Dirichlet 

(RSD), and Regularised Symmetric ARAP (RSARAP) in 2D 

The Hessians are computed according to Algorithm 2 . C++ implementations are provided in the supplement. 
formulation. In such cases, our approach becomes a generalisation 

of FFM. In the supplement we work out the MIPS energy with such 

a δ regulariser. We also follow this setup whenever possible (back- 

substituion/per-element β for 2D MIPS and SD and a global β for 

the rest) for numerical experimentation. 

For the case when β is a constant, the 2D energies, gradi- 

ents and analytic Hessian eigensystems are given in Table 1 for 

Regularised MIPS (RMIPS) , Regularised Symmetric Dirich- 

let (RSD) and Regularised Symmetric ARAP (RSARAP) . The 

Hessian expressions for the 3D cases are given in the supplement, 

as well as a script to generate them symbolically. We follow Smith 

et al. [ 2019 ] notation. 

3.6 Discussion of Invariant-based Formulation 

Distortion energies are typically expressed in terms of singular val- 

ues [Xu et al. 2015 ], Cauchy-Green invariants [Bonet et al. 2016b ], 

polyconvex invariants [Bonet et al. 2015 , 2016a ], 3 or stretch tensor 

invariants [Smith et al. 2019 ]. 

Stretch tensor invariants and singular value formulations can 

both reveal the full eigensystem of the Hessian [Chen and Weber 

2017 ; Smith et al. 2019 ; Zhu 2021 ], but invariant formulations gen- 

erally have the advantage that they encode specific distortion met- 

ric such as length, area, volume. While these metrics can also be 

re-expressed in terms of singular-values, invariant-based formula- 

tions additionally allow convexity to be studied in closed-form, see 

Equation ( 15 ). By adopting an invariant-based formulation, we can 

re-use nearly a century of well-established literature [Ball 1976 ; 

Bonet et al. 2016b ]. Without loss of generality, we chose to work 

with stretch tensor invariants because it allowed us to derive ana- 

lytic eigensystems for our regularised energy Hessians. 

4 OPTIMISATION APPROACH 

We use a numerical continuation technique, coupled with a back-

tracking scheme [Nocedal and Wright 2006 ] inspired by FFM, that

runs a series of minimisation by decreasing an auxiliary penalty

parameter ϵk starting from ϵ0 = 1 (see line 9 of 2nd procedure

in Algorithm 2 ). This parameter is also called the finite untan-

gling sequence parameter. We compute β (Algorithm 1 ) in an

outer loop so it remains constant for all elements and minimisa-

tion iterations. As shown in Algorithm 2 , β can be computed us-

ing a wide range of techniques such as singular-value regulari-

sation [Liao et al. 2021 ; Naitsat et al. 2020 ], Jacobian regularisa-

tion using a well-known empirical formula (line 11 of 2nd proce-

dure) [Gargallo-Peiró et al. 2015 ], or using the finite untangling se-

quence [Garanzha et al. 2021a ]. We have found the latter two result

in faster convergence. In general, we perform the following (in case

of per-element/analytical β , step 2 is not necessary and computing

δ in Algorithm 2 is sufficient; see supplement for C++ code): 

(1) At every round (outer loop in Algorithm 2 ) compute the

worst Jacobian, and then compute δ by setting ϵ0 = 1 . 

(2) Compute the maximum regulariser β over the entire mesh. 

(3) Perform a full PN minimisation (inner loop in Algo-

rithm 2 ): 

(a) For elements with J ≤ 0 compute the regularised invari-

ants, energy, PK1 and filtered Hessian. 

(b) For elements with J > 0 use the standard (non-

regularised) invariants and compute the energy, PK1

and filtered Hessian. 

(4) At the end of every minimisation, if J min ≤ 0 , recompute

β using ϵk based on a sufficient energy decrease, i.e., ϵk =
k k−1 
3 A function D ( F ) is said to be polyconvex if there exists a function D̄ ( F , H , J ) = 
D ( F ) such that D̄ is convex with respect to F , H , and J [Ball 1976 ]. Many non- 
convex problems are solvable, but if they are also non-polyconvex they exhibit nu- 
merical artefacts such as thinning and unnatural deformations. 
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ϵk−1 (1 − D / D ) and δ , and repeat. 

4.0.1 Non-injective States. In a non-injective state, it is not 

necessary to drive the minimisation to gradient- or energy-based 

convergence. We show a simple example in Figure 6 . Two oppo- 

site boundary vertices are moved inwards and optimised for two 
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Fig. 6. Every minimisation round with a constant regulariser value can 

move the vertices towards local injectivity (but may not recover it). It is 

not necessary to drive these intermediate rounds to convergence. Starting 

from a non-injective map (left), the vertex displacements almost vanish 

(middle, iteration 13, | | д | | = 14 .56 ) until convergence is reached (right, 

iteration 71, | | д | | = 9 .05 × 10 −5 ). 
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ALGORITHM 2 : Optimise locally non-injective map 

1: procedure OptimiseMap ( V , T ) 

2: k ← 0 , ϵ0 ← 1 , ρ ← 0 .9 , c ← 0 .5 , threshold ← 10 −4 

3: repeat � Outer minimisation loop 

4: β ← ComputeRegulariser( V , T , ϵk ) 
5: while | | д | | > threshold do � Inner minimisation loop 

6: ˆ D , д , H ← GetFuncGradProjectedHessian ( F , β ) � Use 

β = 0 for elements with J > 0 

7: HΔx = −д 
8: α ← argmin α D ( x + α Δx ) � Line search 

9: x ← x + α Δx 

10: end while 

 

 

inimisation rounds. We show convergence of the first minimisa- 

ion round, where displacements drop quickly despite a high resid- 

al. To detect such cases, we first determine if the number of fold- 

vers have remained unchanged in three consecutive iterations, 

nd whether the displacements have dropped below minimum 

haracteristic length of the mesh. The characteristic length is com- 

uted by scaling minimum edge lengths with the ratio of energy 

ecrease. Similar and better alternatives can be used here [Nait- 

at et al. 2020 ; Zhu et al. 2018 ]. Furthermore, when β is assumed 

onstant, the positivity of J r may not be guaranteed since new neg- 

tive Jacobian may appear during iteration that exceed the value 

f precomputed β . In such cases, we assign the absolute minimum 

nergy over the entire mesh to the corresponding flipped elements 

hat exceed β , and filter their contributions from the line search. 

 NUMERICAL EXPERIMENTS 

n this section, we provide results obtained with our framework 

nd compare against other algorithms. For most studies, the code 

or other frameworks were obtained either from the authors or offi- 

ial project page. For fairness, we also implemented a per-element, 

umerically projected Newton, similar to the PN solvers used in 

implex Assembly [Fu and Liu 2016 ] and TLC-PN [Du et al. 2020a ]. 

For completeness, we also implemented the Hessian modified 

ersion of FFM which performs a semidefinite-indefinite decom- 

osition as presented in Garanzha et al. [ 2021a ] (see Appendix A.2 

n that paper and Appendix B here). We call this version Modified- 

FM . The paper presented but did not implement the approach, 

nd their final version of FFM used an L-BFGS solver. A direct 

omparison with other code bases give us approximate perfor- 

ance comparisons, but a clearer picture emerges by comparing 

ur framework’s results to our own implementation of other tech- 

iques such as Modified-FFM and numerical PN. Unless otherwise 

tated, all analyses were performed single-threaded on an Intel 

eon(R) E5-2650. We use MKL PARDISO, Eigen [Guennebaud and 

acob 2010 ] and Fastor [Poya et al. 2017 ] for tensor manipulations. 

.1 Surface Parametrisation 

5.1.1 Comparing with FFM. We begin by comparing against 

FM. We include our Modified-FFM . We chose two boundary sur- 

ace parametrisation problems [Liu et al. 2018 ] with a small num- 

er of folded elements. For comparison with FFM, we used the 

ame termination tolerance for both our analytic PN solver and 

FM’s L-BFGS solver ( 10 −4 ) with an outer loop tolerance of 10 −5 . 

or fairness, we used the same ϵk -decay formula (finite untangling 

equence [Garanzha et al. 2021a ]) and back-substituted the analyt- 

11: k ← k + 1 

12: ϵk ← max 
(
10 −6 , ϵk−1 max (c, 1 − ˆ D 

k / ˆ D 

k−1 ) 
)

13: until ˆ D 

k+1 > ρ ˆ D 

k and J min > 0 

14: end procedure 

1: procedure ComputeRegulariser ( V , T , ϵk ) 

2: σmin ← inf , J min ← inf 

3: for T ∈ T do 

4: Compute SSVD ( F ) � ( 7 ) 

5: σmin ← min ( min (σ1 , . . . , σi ) , σmin ) 
6: J min ← min ( 

∏ 

i σi , J min ) 
7: end for 

8: if SingularValueRegulariser then 

9: δ = ϵk − σmin � ABCD formula 

10: else if JacobianRegulariser then 

11: δ = 
√ 

ϵ 2 
k 
+ 0 .04 min (0 , J min ) 2 � FFM empirical formula 

12: end if 

13: return ComputeBeta ( V , T , J min , δ ) � Algorithm 1

14: end procedure 

1: procedure GetFuncGradProjectedHessian ( F , β ) 

2: Compute regularised energy ˆ D � ( 1a ) 

3: Compute regularised gradient д using PK1 � ( 2a ) 

4: [ λi , e i ] = GetRegularisedEigenSystem( F , β) 
5: H ← 

∑ 

i max ( 0 , λi ) E i ⊗ E i � Project Hessian to SPD, ( 16 ), ( 18 )

6: return 

ˆ D , д , H 

7: end procedure 

ical β into energy derivatives to ensure the differences were only

solver related. The volumetric term in FFM was chosen as 1 / 128

which corresponded well with our F -based MIPS. We confirmed

that the initially computed Jacobians matched. 

Figure 5 shows comparison of our framework with FFM and

Modified-FFM. All three repaired fold-overs successfully, but 

our regularisation achieved the same quality almost 5 × faster .

Modified-FFM almost degraded to a first order in the subsequent

iteration of outer loop but performed better than FFM. 

5.1.2 Comparison with TLC. To compare against TLC, we used

the David-to-H local injectivity benchmark from Du et al. [ 2020a ]

(Figure 7 ). We chose the regularised MIPS energy and symboli-

cally generated a regularised Advanced MIPS (AMIPS) energy 

for quasi-isometric mapping. This adds a volumetric term to MIPS

which can be written in terms of regularised stretch invariants as 

ˆ D RAMIPS (I I F , J ) = μ
I I F 
2 J r 
+ μ

( 
1 − J 

J r 

) 
+ λ

(
J r + J −1 

r 

)
− (2 λ + μ ) 

where μ and λ are, respectively, shape and area/volumetric 

coefficients. 
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Fig. 7. David-to-H challenge from Du et al. [ 2020b ], using our conformal 

(RMIPS) and quasi-isometric (RAMIPS, λ = 1 ) energies. For compatibility 

with TLC, all solvers were stopped when local injectivity was recovered. 

TLC’s QN solver and FFM conformal energy (MIPS only part) failed to 

recover local injectivity. Projected Newton and Modified-FFM converged 

quicker than QN. Our framework was up to 10X faster than FFM and 

TLC. 
Fig. 8. Comparison with Simplex Assembly (SA) [Fu and Liu 2016 ]. SA 

minimises AMIPS energy, which results in better conformal quality, while 

our RSARAP and RSD energies result in better isometric distortion, while 

 

We ran experiments for λ = 0 (MIPS) and λ = 1 , and set μ = 1 
in both cases. All solvers were stopped as soon as local injectiv- 

ity was recovered. Both FFM (with λ = 0 ) and TLC’s QN solvers 

failed to produce a valid “all” injective parametrisation for this 

model. With FFM, regardless of how we tuned ϵk , it was unable 

to solve the original MIPS energy. FFM with a volumetric term 

succeeded. 

We further ran the Modified-FFM and a numerical PN solver 

for the case of quasi-isometric mappings ( λ = 1 ). In this exam- 

ple, Modified-FFM was faster than FFM, and while PN converged 

quickly, the cost of the per-element eigen-decomposition domi- 

nated. On the other hand, our framework recovered injectivity 

up to 10 × faster (Figure 7 ). While this decomposition is embar- 

rassingly parallel, we ran our benchmarks serially for fairness of 

comparison. 

TLC generated huge distortion with J min = 1 . 2 × 10 −20 , which 

is 10 19 times worse than the ones obtained by our RAMIPS energy. 

Best running times and qualities are highlighted in Figure 7 . 

5.1.3 Comparison with SA. Simplex Assembly (SA) [Fu and 

Liu 2016 ] can respect user-specified distortion bounds, but loses 

the robustness of TLC, FFM, or our framework, with respect to 

repairing fold-overs. SA minimises the same AMIPS energy as 

FFM, so it is natural to compare it against our regularised MIPS 

energy. 

creating inversion-free maps similar to SA. Generally, SA creates elements

with low J . Denser histograms about J = 1 are better. 

We chose to analyse qual- 

ity with the example in We- 

ber and Zorin [ 2014 ], where 

a convex polygon is morphed 

into a concave shape using 

a harmonic mapping, result- 

ing in 28 fold-overs (see in- 

set). We also compared the results of our framework using RSD

and RSARAP. As seen at the bottom of Figure 8 , the quality with

respect to J obtained with SA is comparable to our RMIPS and FFM.

While SA creates a few elements with extremely low J , our

framework pushes the elements away from this zone. SA’s confor-

mal results are strictly within a bound and better than our RMIPS.

Given that RSD and RSARAP create an isometric mapping, the iso-

metric distortion of RSARAP and RSD is lower. 

5.2 Locally Injective Mappings Benchmark 

We conducted a parametrisation study with SA, ABCD, FFM, TLC,

and our regularised energies on the most challenging examples

from the recent benchmark of Du et al. [ 2020b ]: the Lucy-to-G and

Gargoyle-to-S embeddings (Figure 9 ). To cover the spectrum from
ACM Transactions on Graphics, Vol. 42, No. 3, Article 29. Publication date: April 2023. 
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onformal to isometric, we used RMIPS (and FFM with λ = 1 / 128 , 

hough quasi-isometric maps can also be obtained by increasing 

he value of λ), RSD and RSARAP energies. The initial embed- 

ings for these models have ∼98K triangles and over 3K fold- 

vers, requiring the optimisation to move a large layer of elements 

nto a concave shape. SA and ABCD (PN) were unable to cre- 

te inversion-free domains, and respectively failed after ∼300 and 

400 seconds. TLC (PN) succeeded, but yielded nearly collapsed el- 

ments ( J ≈ 0 ) due to stopping criterion. FFM succeeded but took 

ver an hour on the Lucy model. 

Our framework minimised the RMIPS energy almost 75 × faster 

han FFM on this model. It successfully minimised RMIPS, RSD, 

nd RSARAP in a few seconds, and yielded high-quality, fixed- 

oundary, locally injective maps. The results of FFM and our 

MIPS energy were visually identical, so only FFM is shown in 

igure 9 . However, the histograms should give a better represen- 

ation of quality ( J , conformal σ1 
σ2 

and isometric I I F ) distribution. 

We ran our regularised energies over all the 2D and 3D bench- 

arks of Du et al. [ 2020b ], as shown in Figure 10 . Our framework 

assed the entire benchmark (similar to TLC and FFM). The bench- 

ark covers a variety of 2D parameterisations, 3D polycube pa- 

ameterisations and 3D deformations, and range from easy to ex- 

remely difficult. We chose λ = 0 . 01 in 2D (to be compatible with 

FM although, this creates low quality elements) and λ = 1 in 3D 

or the RAMIPS energy. Unlike Du et al. [ 2020a ]; Garanzha et al. 

 2021a ], we used the significantly more challenging source mesh as 

he rest configuration, instead of an auxiliary “ideal” element. 

We also ran a side-by-side comparison with FFM, Modified- 

FM, and ABCD by tuning all solver parameters (e.g., number of 

teps, termination criteria, and ϵk decay (for FFM and ours)) to be 

dentical. Figure 11 shows our framework was statistically 12.9 ×
aster than FFM over 10,000 2D meshes and 2 × faster over 900 

D meshes. ABCD did not have 100% success rate (91.1% in 2D 

nd 88.3% in 3D) but, it was the second fastest method in 2D for 

ases that it succeeded (within 1.8 × of our analytic PN). The per- 

ormance of ABCD and our framework confirms that for 2D prob- 

ems, PN solvers are preferred. 

In many 3D cases, ABCD stalled at the repair phase and in gen- 

ral performed over 10 × slower (excluding failure times) com- 

ared to ours. For some 3D cases when the initialisation was close 

o the rest shape, FFM’s L-BFGS was faster than our framework. 

owever, it had a more non-uniform convergence pattern and dis- 

ersed performance profile over the entire dataset. As expected, 

FM’s performance was closer to ours in 3D since, unlike L-BFGS, 

he cost of the linear solver factors in for our framework. The sec- 

nd fastest method in 3D was our implementation of Modified- 

FM, which was 43% slower than our analytic PN. This is be- 

ause Modified-FFM, despite doing more iterations than analytic 

N, does not require an SVD which dominates the assembly cost 

n 3D. 

Overall, our framework was strictly faster than other meth- 

ds on 72% (7728/10706) of the 2D cases and 65% (593/904) of the 

D cases. Such performance disparities between different optimis- 

rs have been well documented in the context of locally injective 

ethods [Kovalsky et al. 2016 ; Rabinovich et al. 2017 ; Zhu et al. 

018 ]. Quality-wise, best performing methods were our RSD (see 

Figure 10 instead) and ABCD, although all frameworks yielded

comparable results. 

5.3 Volumetric Polycube Parametrisation 

Fixed boundary volumetric polycube parametrisation is an ideal 

candidate for our regularised energies, since fold-overs are com-

mon. In Figure 12 we show several examples with many initially

folded tetrahedra, which we then optimised with the RMIPS en-

ergy. Given the fixed boundaries, we did not optimise the individ-

ual faces, which can lead to higher distortion. The exception is the

Max Planck model, where we processed the individual faces (the

smaller cube in Figure 12 ) using 2D RMIPS. This yielded a more

uniform distribution of conformal distortion along the surface, and

improved the quality of initial parametrisation. 

5.4 Free Boundary Surface Parametrisation 

In Figure 13 we embed multiple 3D models onto star-shaped do-

mains, resulting in ∼10K fold-overs. We used RSARAP to optimise

our map and obtained results similar to previous works [Claici

et al. 2017 ; Rabinovich et al. 2017 ; Shtengel et al. 2017 ; Smith et al.

2019 ] in approximately the same number of iterations as Shtengel

et al. [ 2017 ] and Smith et al. [ 2019 ]. Our RSARAP energy is stabler,

and converges quickly despite starting from an invalid Tutte em-

bedding. Since the energy has a barrier, regularising J decreases

the residual, which accelerates convergence. These problems each 

took 10–12 iterations to converge. 

In Figure 1 , we start from an invalid mapping and use our RSD

energy. As described in Section 2 , using regularised barrier en-

ergies and filtered Hessians within PN solvers can cause oscilla-

tory convergence, (see Figure 13 ), while unfiltered Hessians lead to

stalls. Over a wide range of examples, we observed that our solver

did not have this issue. 

5.5 Globally Injective Surface Parametrisation 

The purpose of our framework is to generate inversion-free map-

pings; a first step towards local injectivity. However, many frame-

works (including ours), cannot ensure a locally injective map due

to overwinding issue and k-covering traps (see Figure 4 ). Over-

laps can occur under free boundaries, which means the parametri-

sation may not be globally injective as well. The authors of

TLC fixed this issue with the Smooth Excess Area (SEA) pro-

posal [Du et al. 2021 ], while FFM proposed using phantom trian-

gulation [Garanzha et al. 2021b ]. 

Our regularisation scheme allows for the complete re-use of ex-

isting techniques for locally injective mappings. To circumvent 

both overwinding and boundary self-intersection, we can use a

“curve-repulsive” energy on the boundaries, such as those pro- 

posed in Smith and Schaefer [ 2015 ] and Su et al. [ 2020 ]. In Figure 14

we combined a simplified implementation of Smith and Schaefer 

[ 2015 ] contact penalty with our RSD energy to obtain a globally in-

jective mesh parametrisation. We used the triangle inequality en-

hancement of Su et al. [ 2020 ] but did not use a surrounding shell

mesh. In some hard cases, overwinding can still occur around inte-

rior vertices [Weber and Zorin 2014 ]. Furthermore, such boundary

energies do not work when the initialisation has a self-intersecting
AC
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Fig. 9. The most challenging examples from Du et al. [ 2020b ]. Of all tested frameworks, only TLC-PN and FFM recovered local injectivity. Our framework 

succeeded and minimised polyconvex MIPS and non-convex SD and SARAP an order of magnitude faster, creating equal or superior quality mappings. 

Denser histograms around J = 1 , 
σ1 
σ2 
= 1 and I I F = 2 are better. 

Fig. 10. Performance of our regularised energies over the benchmarks 

in Du et al. [ 2020b ] showing (a) 10,706 meshes in 2D (b) 904 meshes in 

3D. 

Fig. 11. Comparing against FFM, Modified-FFM, and ABCD over 2D and 

3D benchmarks of Du et al. [ 2020b ]. We used our RAMIPS model, which is 

closest to FFM. FFM and our framework passed the benchmark with 100% 

success rate. ABCD had 950 failures in 2D and 106 failures in 3D. The mean 

 

 

 

 

 

boundary. However, this is a limitation of Smith and Schaefer 

[ 2015 ], and we leave a more thorough investigation to future work. 

5.6 3D Mesh Deformation 

5.6.1 Comparison with ABCD. We compare with Adaptive 

Block Coordinate Descent (ABCD) [Naitsat et al. 2020 ] and FFM 

in 3D over some challenging test cases. ABCD follows a two-stage 

procedure in the presence of invalid elements, i.e., map repair and 

then optimisation. For repair, it uses a flip penalty distinct from 

the energy in the rest of the domain. In contrast, we minimise the 

same energy over all elements. 

timing over 2D benchmarks were: RAMIPS 2.34s, Modified-FFM: 4.53s

(1.93 × slower), FFM: 30.19s (12.90 × slower) and ABCD: [including failure

cases - 11.49s (4.91 × slower); excluding failure cases - 4.22s (1.80 × slower)].

The mean timing over 3D benchmarks were: RAMIPS 2.84s, Modified-FFM:

4.05s (1.43 × slower), FFM: 5.94s (2.09 × slower), and ABCD: [including fail-

ure cases - 112.96s (39.77 × slower); excluding failure cases - 29.82s (10.57 ×
slower)]. 

In Figure 15 we compare against ABCD with modified Symmet-

ric Dirichlet. For a twisting bar, ABCD and our framework cre-

ate inversion-free maps with almost identical isometric quality;

the histograms almost overlap. However, our RSD energy creates
ACM Transactions on Graphics, Vol. 42, No. 3, Article 29. Publication date: April 2023. 
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Fig. 12. Fixed boundary conformal polycube parametrisation: Red meshes 

show the model and white-to-red shows conformal distribution. Labels 

indicate # of tetrahedrons, # of initial fold-overs, # of final fold-overs, and 

maximum conformal σ1 /σ3 deviation. 
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lements with better Jacobian quality ( J min in Figure 16 ). We traced 

his difference to ABCD’s termination criteria. 

For these stress tests, our framework was generally faster than 

BCD’s combined map repair and optimisation. With the ex- 

eption of one example (Figure 16 ) where our framework was 

arginally slower (15% for wrench example) our framework con- 

erged before ABCD’s map repair completed. For a severely 

wisted Armadillo, ABCD (PN) failed under fixed-boundary, while 

ur framework minimised both RSD and RAMIPS. As discussed 

n (Figure 11 ) however, our framework was statistically over 10 ×
aster than ABCD over a large 3D dataset. We also ran FFM for 

hese 3D cases, and while it succeeded for fixed-boundary prob- 

ems, it failed for the free-boundary Armadillo and wrench. 

.7 Pathological Test Cases 

he 3D benchmark in (Figure 11 ) covers a wide range of practical 

roblems, and our framework passes 100%. Nevertheless, it is pos- 

ible to handcraft pathological tests that are more difficult to opti- 

ise. Following on from Figure 15 , we optimise a severely twisted 

ar (Figure 17 ) by fixing its ends and using FFM, ABCD, and our 

AMIPS and RSD energies. This is a corner case where both our 

AMIPS energy and FFM generate inversion-free maps, but the fi- 

al mesh overwinds around itself. ABCD generates a superior map, 

ut with multiple twists and our RSD unfolds the bar to the least 

easible number of twists with the same termination criterion. This 

ifference is due to ABCD’s block-wise repair. Our framework in- 

tead needs to “blow” the whole mesh in order to un-flip hence, 

esulting in a global minimum. However, the difference between 

AMIPS and RSD, lies in the underlying energy rather than our 

egularisation scheme. 

We further stress test our framework with two randomised ogre 

eads that are then shrunk by 100 ×. In Figure 18 , the second initial- 

sation is challenging because intermediate configurations develop 

round two lines (fixed vertices around ears) and the optimiser has 

o step through low curvature regions. Neither FFM nor TLC are 

uitable for such cases, as they perform best under fixed bound- 

ry simulations. With our regularisation scheme we were able to 

methods. 

Invertible elasticity is not a suitable substitute for locally injec-

tive methods. We deform an elephant in Figure 19 by pushing the

boundary vertices to extremes, and compare our RAMIPS energy

with SNH [Smith et al. 2018 ]. While SNH is suitable for invertible

simulations, it fails to generate an inversion-free mapping. With a

traditional line search, the energy is minimised at a non-injective

state, and with a Smith and Schaefer [ 2015 ] line search, the simu-

lation stalls. 

6 DISCUSSION AND CONCLUSION 

We have presented a regularisation approach to geometric op-

timisation of locally non-injective mappings using popular flip- 

preventing energy. Our regularisation scheme is based on spectral

shift in singular values, results in consistent formulation, and pre-

serves convexity when applied on distortion energies (particularly, 

in 2D). 

In addition, we have discussed the analytic eigensystems of

the most important energies, such as conformal and isometric

distortions. when expressed in terms of regularised stretch in-

variants. Through numerous examples in 2D and 3D, we have

shown that our approach is extremely robust, and its second-order

nature allows it to outperform state-of-the-art algorithms. For 

2D surface parametrisation problems, our method appears to re-

cover/optimise maps quicker than other methods we tested, while

maintaining similar or superior quality. Given that, our framework

can be tuned like FFM and ABCD its success rate is no less than

these frameworks however, spectral shifting naturally also yields 

more stable Hessian eigensystems than Quasi-Newton methods 

which in turn eliminates numerical and divergence issues. 

Our framework works well in practice, but has limitations. We

do not guarantee bounded distortions. Further, there is not a the-

oretical guarantee that the global minimum of energy will always

be an injective map. As discussed in Section 5.7 , it can fail on

pathological tests depending on the energy. Regularisation coun- 

ters the fundamental assumptions of elasticity such as growth con-

dition. The complexity of this issue was explored in Garanzha et al.
AC
inimise RAMIPS/RSD/RSARAP and recover the rest shape, albeit 

nder a much tighter 10 −6 residual tolerance. 

.8 Comparison with Invertible Elasticity 

odels that intentionally remove barriers in an attempt to extend 

nergies to the infeasible zone are known as invertible [Irving et al. 

004 ; Smith et al. 2018 ; Stomakhin et al. 2012 ]. Irving et al. [ 2004 ] 

roposed an invertible model at the gradient level (PK1), resulting 

n an inconsistent treatment of gradients. Energetic consistency 

as restored by Stomakhin et al. [ 2012 ] via C 

2 extension, while 

 state-of-the-art Stable Neo-Hookean (SNH) energy was pro- 

osed by Smith et al. [ 2018 ] which removed barriers altogether. 

Our regularisation also extends distortion energies into the 

nfeasible zone at the singular-value level, so how is it related? 

nvertible elasticity removes barriers, making it unsuitable for 

enerating inversion-free mappings in the presence of positional 

onstraints. Our regularisation includes the barrier for repaired 

lements, and only regularises degenerate elements. Once the map 

s repaired, our approach reduces to those of locally injective 
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Fig. 13. Free boundary surface parametrisation starting from an invalid embeddings using regularised Symmetric ARAP. The original energy is non-convex 

and infinite, but our approach converges as quickly as Shtengel et al. [ 2017 ]; Smith et al. [ 2019 ]. Regularised infinite energies in PN solvers can have 

oscillatory convergence, and standard Newton experiences many stalls. The lower right graph compares PN to our approach. 

Fig. 14. We combine a prototype of Smith and Schaefer [ 2015 ] with our 

RSD energy and apply it to locally non-injective initialisations (Tutte + 

interior nodes randomised) to obtain globally injective parameterisations. 
[ 2021a ] as FFM shares the same limitation. Moreover, most barrier 

energies where singular value shifting applies are also non-convex. 

Nevertheless, the shift is a linear transform that does not deter con- 

vexity or nonlinearity. 

Since our scheme generalises over the regularisation parameter, 

a future direction is to investigate better estimation of the regular- 

isation parameter for other numerical optimisation problems. 

APPENDICES 

A WHY THE COFACTOR INVARIANTS? 

Invariants that can be expressed in terms other invariants of the 

same family are common (e.g. I I � 
C 

= 1 / 2 (I 2 
C 

− I I C 

) with Cauchy- 

Green) and can be useful when they have clean physical interpre- 

of the extended stretch invariants (Equation ( 10 )) without relying

on analytic eigensystems. This allows us to study convexity, and

perform convex-concave decompositions in closed-form. To obtain

these, we first need the gradients of the invariants 

G I F = 
∂I F 

∂ F 
= R , G I I F = 

∂I I F 

∂ F 
= 2 F , G J = 

∂ J 

∂ F 
= H 

G I H 

= 
∂I H 

∂ F 
= I F R −G , G I I H 

= 
∂I I H 

∂ F 
= 2 H × F 

as well as the Hessians 

H I F = 
∂ 2 I F 
∂ F ∂ F 

= 
∑ 

i 

λ̄i T i , H I I F = 
∂ 2 I I F 

∂ F ∂ F 
= 2 I, H J = 

∂ 2 J 

∂ F 
= I × F 

H I H = 
∂ 2 I H 

∂ F ∂ F 
= R ⊗ R + I F 

∑ 

λ̄i T i − I, H I I H = 
∂ 2 I I H 

∂ F 
= 2 F × I × F ,
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tations. In terms of our extended invariants, there are multiple rea- 

sons to include the two additional cofactor invariants, I H 

and I I H 

: 

• A complete set of invariants should complete the character- 

istic polynomial of F (note I H 

): σ 3 
i − I F σ

2 
i + I H 

σi − J = 0 
• I I H 

corresponds to the Cauchy-Green invariant I I C 

, which 

does not appear in the Smith et al. [ 2019 ] invariants 

• They appear in well-known energies such as Symmetric 

Dirichlet, Symmetric ARAP (see Table 1 ) 

• They appear in our β parameter (see Algorithm 1 ) 

• They enable closed-form study of polyconvexity; our 

supplement proves lack of polyconvexity for Symmetric 

Dirichlet 

• They significantly simplify the algebra for gradient and Hes- 

sian expressions which become forbiddingly long when ex- 

pressed in terms of singular-values or Smith et al. [ 2019 ]. 

B GRADIENT AND HESSIAN TENSORS 

B.1 Gradient and Hessian of Distortion Energies 

We can explicitly write generic expressions for the gradient (Equa- 

tion ( 3 )) and Hessian (Equation ( 4 )) of distortion energies in terms 
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Fig. 15. 3D stress tests with RSD, RSARAP and RAMIPS energies: Twisted bar examples were initialised to: π , 1 .8 π and 4 .25 π with fixed boundaries. 

Armadillo with warped legs and arms (free boundary with one random point fixed). Wrench was sliced then oriented negatively (free boundary with one 

random point fixed). We compare our results with ABCD (PN). Our framework produces better quality distribution more quickly in all but one case (see 

Figure 16 ). 

Fig. 16. Performance and quality metrics corresponding to Figure 15 . In 

the top table RSD corresponds to our regularised Symmetric Dirichlet. 

Histograms show distribution of J and isometric distortion I I F for the 

first bar problem where most significant differences were observed in the 

quality. 

w

t

I
t

c

T

T

Fig. 17. Pathological tests: severely twisted bar with positional con- 

straints. Our RSD model, ABCD, FFM (and RAMIPS model) all generate 

inversion-free maps (zero fold-overs) but with significantly different pro- 

files. Both FFM and our RAMIPS create overwinding (not locally injective 

m

here T i s are the twist tensor [Smith et al. 2019 ], H × F is the 

ensor cross product between two 3 × 3 tensors, and I × F and F ×
 × F are higher-order tensor cross products. Eigen code is given in 

he supplement. The gradient (Equation ( 3 )) of a distortion energy 

an be obtained using the chain rule 

P = 
∂D 

∂ F 
= ∇ F 

ˆ D (I F , I I F , I H 

, I I H 

, J ) 

= 
∂ ˆ D 

∂I F 
R + 2 

∂ ˆ D 

∂I I F 
F +
∂ ˆ D 

∂I H 

(I F R − F ) + 2 
∂ ˆ D 

∂I I H 

H × F + ∂ 
ˆ D 

∂J 
H . 

his is a d × d matrix and can be flattened in to a d 2 × 1 vector. 

∂ I I H 

∂ I I H 

∂ J ∂ J 

+ 2 
∂ ˆ D 

∂I I F 
I +

∂ ˆ D 

∂I F 
H I F +

∂ ˆ D 

∂I H 

H I H + 2 
∂ ˆ D 

∂I I H 

F × I × F +
∂ ˆ D 

∂ J 
I × F 

+ 2 

( 
∂ 2 ˆ D 

∂ I F ∂ I I F 
R ⊗ F 

) sym 

+

( 
∂ 2 ˆ D 

∂ I F ∂ I H 

R ⊗ (I F R − F ) 

) sym 

+ 2 

( 
∂ 2 ˆ D 

∂ I F ∂ I I H 

R ⊗ ( H × F ) 

) sym 

+

( 
∂ 2 ˆ D 

∂ I F ∂ J 
R ⊗ H 

) sym 

+ 2 

( 
∂ 2 ˆ D 

∂ I I F ∂ I H 

F ⊗ (I F R − F ) 

) sym 

+ 4 

( 
∂ 2 ˆ D 

∂ I I F ∂ I I H 

F ⊗ ( H × F ) 

) sym 

+ 2 

( 
∂ 2 ˆ D 

∂ I I F ∂ J 
F ⊗ H 

) sym 

+ 2 

( 
∂ 2 ˆ D 

∂ I H 

∂ I I H 

(I F R − F ) ⊗ ( H × F ) 

) sym 

( ) sym ( ) sym 

he Hessian can be expressed as 

AC
aps). 

H = 
∂ 2 D 

∂ F ∂ F 
= ∇ 2 

F 
ˆ D (I F , I I F , I H 

, I I H 

, J ) 

= 
∂ 2 ˆ D 

∂ I F ∂ I F 
R ⊗ R + 4 

∂ 2 ˆ D 

∂ I I F ∂ I I F 
F ⊗ F +

∂ 2 ˆ D 

∂ I H 

∂ I H 

(I F R − F ) ⊗ (I F R − F )

+ 4 
∂ 2 ˆ D 

( H × F ) ⊗ ( H × F ) +
∂ 2 ˆ D 

H ⊗ H 

+
∂ 2 ˆ D 

∂ I H 

∂ J 
(I F R − F ) ⊗ H + 2 

∂ 2 ˆ D 

∂ I I H 

∂ J 
( H × F ) ⊗ H (15) 
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Fig. 18. Exploding ogre: We randomise and then shrink an ogre head by 100 × from the rest pose and our algorithm recovers the original shape. 

Fig. 19. Comparison with invertible elasticity: We compare our RAMIPS 

energy with Stable Neo-Hookean (SNH) with hard positional constraints; 

fixed boundary (red dots) and vertices moved to extremes (yellow lines). 

SNH energy fails to create an inversion-free mapping as it has no barrier, 

but we succeed because we only temporarily regularise barriers. 
Blue terms are diagonal entries of the Hessian, and are second 

derivatives of the energy with respect to the same invariant. Gre e n 
terms are off-diagonal entries that are second derivatives of the en- 

ergy with respect to different invariants. Red terms are first deriva- 

tives of the energy with respect to the invariants, and form the geo- 

metric stiffness term [Bonet et al. 2016b ]. The “sym” superscript 

indicates off-diagonal blocks with symmetric counterparts s.t. for 

every product A � B , there exists B � A , wherein � is any one of 

the tensor products along the off-diagonal. Equation ( 15 ) can be 

flattened in to a d 2 × d 2 matrix. 

For polyconvex energies, all terms except the last three red ones 

are SPD (the first two, I and H I F are SPD), so a convex-concave 

decomposition can be performed by discarding the last three red 

terms. Modified-FFM was implemented using this approach. 

B.2 Eigenmatrices of the Invariants 

Eigenmatrices of stretch invariants have been covered in de- 

tail [Kim and Eberle 2022 ; Kim et al. 2019 ; Smith et al. 2019 ], and 

three types arise: twist ( T ), flip ( L ), and scaling ( D i ) tensors. 

B.2.1 General Isotropic Energies. In 2D, to obtain the analytic 

eigensystem of an arbitrary isotropic energy, we have 

H = λ1 E 1 ⊗ E 1 + λ2 E 2 ⊗ E 2 + λ3 L + λ4 T (16) 

where T and L are twist and flip tensors and E 1 and E 2 are 

coupled scaling modes. These can be expressed using decoupled 

λi+3 = 
I F + σi 

σj + σk 
E i+3 = T i i, j, k = 1 , 2 , 3 , j � i, k � i, j 

whereas flip modes have constant eigenvalues 

λi+6 = −1 E i+6 = L i i = 1 , 2 , 3 

and the coupled scaling modes 

λ1 = 2 , λ2 ,3 = −1 E i = U diag ( Q i ) V 
T i = 1 , 2 , 3 

where Q i are the eigenvectors of A = [0 , 1 , 1; 1 , 0 , 1; 1 , 1 , 0] . 

B.2.3 Analytic Eigensystem of I I H 

. For the twist modes we

have 

λi+3 = 2 
(
σ 2 

j + σi σk 

)
E i+3 = T i i, j, k = 1 , 2 , 3 , j � i, k � i, j 

and the flip modes have the same structure 

λi+6 = 2 
(
σ 2 

j − σi σk 

)
E i+6 = L i i, j, k = 1 , 2 , 3 , j � i, k � i, j .

The coupled scaling modes are from the eigensystem of: 

A = 2 

⎡ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

σ 2 
2 + σ

2 
3 2 σ1 σ2 2 σ1 σ3 

σ 2 
1 + σ

2 
3 2 σ2 σ3 

sym σ 2 
1 + σ

2 
2 

⎤ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

where we then apply Equation ( 19 ). 
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scaling modes D 1 and D 2 as 

E 1 = 
1 

√ 
1 + τ 2 

(τD 1 + D 2 ), E 2 = 
1 

√ 
1 + τ 2 

( D 1 − τD 2 ) (17) 

where τ = 0 if the scaling modes decouple. In 3D, the analytic 

eigensystem can be written as 

H = 

3 ∑ 

i= 1 

( 
λi E i ⊗ E i + λi+3 L i + λi+6 T i 

) 
. (18) 

Here, E i can be computed by solving the 3 × 3 eigenvalue problem 

for the coupling matrix A 

E i = U diag ( Q i ) V 
T (19) 

where Q i are the eigenvectors of A (see Smith et al. [ 2018 , 2019 ]). 

We can now present the analytic eigensystem of our two new co- 

factor invariants, I H 

and I I H 

. 

B.2.2 Analytic Eigensystem of I H 

. For the twist modes we have 
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