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Figure 1: A hand mesh composed of 458K tetrahedra, running at 5.8 FPS (171 ms), including both self-contact detection and resolution. Our
algorithm accelerates the computation of complex self-contacts by a factor of 5× to 52× over other subspace methods and 166× to 391×
over full-rank simulations. Our self-contact computation never dominates the total time, and takes up at most 46% of a single frame.

Abstract

We present an efficient new subspace method for simulating the
self-contact of articulated deformable bodies, such as characters.
Self-contact is highly structured in this setting, as the limited space
of possible articulations produces a predictable set of coherent col-
lisions. Subspace methods can leverage this coherence, and have
been used in the past to accelerate the collision detection stage of
contact simulation. We show that these methods can be used to ac-
celerate the entire contact computation, and allow self-contact to
be resolved without looking at all of the contact points. Our anal-
ysis of the problem yields a broader insight into the types of non-
linearities that subspace methods can efficiently approximate, and
leads us to design a pose-space cubature scheme. Our algorithm
accelerates self-contact by up to an order of magnitude over other
subspace simulations, and accelerates the overall simulation by two
orders of magnitude over full-rank simulations. We demonstrate
the simulation of high resolution (100K – 400K elements) meshes
in self-contact at interactive rates (5.8 – 50 FPS).
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1 Introduction

Subspace methods, also known as model reduction, or reduced-
order methods, have recently been used to accelerate a variety
of simulations in computer graphics, such as deformable bodies
[Barbič and James 2005] and fluids [Treuille et al. 2006]. These
methods detect temporal redundancies in the simulation during
a precomputation stage and use them to construct efficient, low-
dimensional subspaces. Simulations are performed in these sub-
spaces at runtime, and routinely yield speedups that are orders of
magnitude faster than their “full-rank” counterparts.

This approach is especially appealing for deforming solids, because
material properties naturally limit the shapes that a solid model can
take on. Thus, it is reasonable to expect that the majority of impor-
tant deformations can be spanned by a small, “low-rank” subspace.
This intuition also extends to articulated bodies, such as character
meshes. The global deformation of a character may be complex,
but the deformation of an individual limb (e.g. a forearm) is still
fairly low-rank. Articulated subspace methods [Kry et al. 2002;
Kim and Pollard 2011], which include substructuring and domain
decomposition approaches [Barbič and Zhao 2011; Kim and James
2011; Yang et al. 2013] have thus been developed that successfully
leverage this coherence.

In the paper, we explore whether this intuition can be applied to
self-contact on an articulated mesh. Dense self-contacts involv-
ing thousands of collisions routinely arise on these meshes, and
can consume more than 90% of the computation time in a single
subspace simulation frame. Since these contacts are driven by the
articulation and not unpredictable external forces, they display pre-
cisely the type of coherent behavior that subspace methods excel at
exploiting. However, we are only aware of subspace techniques that
accelerate the collision detection stage of contact simulation [James
and Pai 2004; Barbič and James 2010]; the contact resolution stage
is still computed in a full-rank manner.

We instead present a subspace method that encompasses the en-
tire self-contact simulation. While self-contact is highly coherent,
it is also highly non-linear, and necessitates the use of cubature,
a method that has recently emerged for efficiently handling com-
plex non-linearities in subspace simulations [An et al. 2008]. Our
analysis of the self-contact problem improves the understanding of
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when cubature succeeds and fails, and provides insights that could
be applicable to other problems. Guided by this analysis, we design
a pose-space cubature scheme that is able to resolve self-contact
without actually detecting and resolving all of the collision points.
Instead, it is only necessary to resolve the contact at a sparse set of
“cubature points”. Our contributions are as follows:

• We show how to efficiently apply the subspace cubature ap-
proach to the problem of self-contact;

• We identify two general conditions that will cause the stan-
dard cubature approach to fail: sparse training matrices and
excessive discontinuities (e.g. Heaviside functions);

• We propose pose-space cubature, which directly addresses
these issues and enables efficient subspace self-contact.

2 Related Work

Subspace methods were introduced to graphics by Pentland and
Willams [1989] for the simulation of deformable bodies, but were
initially applied only to linear materials. They were subsequently
extended to support the polynomial systems that arise in deformable
body and fluid simulations [Barbič and James 2005; Treuille et al.
2006; Wicke et al. 2009], and most recently to algebraic systems
[Stanton et al. 2013]. In all of these cases, the subspace method
successfully accelerated the underlying simulation by several or-
ders of magnitude.

The preceding methods work well when the underlying non-
linearity can be written as a static tensor and projected as a prepro-
cess. When such a tensor is not available, the cubature approach
introduced by An et al. [2008] can be applied, as it only requires
a method of point-sampling the non-linearity. This approach was
successfully applied to fluids [Kim and Delaney 2013] and used to
make subspace methods more resilient to external collisions [Har-
mon and Zorin 2013]. The cubature training stage can be time-
consuming, so efficient methods such as importance sampling [Kim
and Delaney 2013; Harmon and Zorin 2013] and Hard Threshold-
ing Pursuit (HTP) [von Tycowicz et al. 2013] have been developed.
We will also use the cubature approach.

Subspace methods have been used to accelerate various types of
contact. James and Pai [2004] showed that a reduced-order triangle
inequality could be exploited to construct a very efficient bound-
ing volume hierarchy (a.k.a. a BD-Tree). Self-collision detection
has also been accelerated using collision “certificates” [Barbič and
James 2010], as well as Bounded-Normal Trees [Schvartzman et al.
2009]. Contact with external objects [Harmon and Zorin 2013] and
between two separate deformable objects [Barbič and James 2008]
have also been accelerated. All of these works either accelerate
only the collision detection stage, or do not address self-contact. In
this work, we show that a unified subspace approach can be devised
that accelerates the entire self-contact computation pipeline.

More generally, the simulation of deformable bodies is a well-
studied problem in computer graphics, and excellent surveys [Gib-
son and Mirtich 1997; Nealen et al. 2005] and course notes [Sifakis
and Barbič 2012] are available. Simulating articulated bodies sur-
rounded by elastic flesh is of particular interest, as they corre-
spond to human and animal characters. In addition to their use
in feature animation [Clutterbuck and Jacobs 2010], realistic vir-
tual humans also have numerous medical applications [Hirota et al.
2001]. Thus, many efficient methods have been developed, includ-
ing co-rotational elasticity and multigrid solvers [Zhu et al. 2010;
McAdams et al. 2011; Liu et al. 2013]. These full-rank methods
are complementary to our current approach. For example, we use
the material and contact model from McAdams et al. [2011] to gen-

erate data for our subspace solver. As these solvers become more
efficient, our preprocessing stage will proportionally accelerate.

Finally, recent geometric skinning work has yielded impressive re-
sults by using implicit surfaces [Vaillant et al. 2013], and also by
borrowed ideas from physics-based simulation [Kavan and Sorkine
2012]. We go in the opposite direction and borrow ideas from the
geometric skinning [Kavan et al. 2008] and Pose Space Deforma-
tion [Lewis et al. 2000] literature to accelerate our physics-based
approach. Ours is not the first technique to do this (see e.g. Eigen-
Skin [Kry et al. 2002]), but we specifically design a novel method
that uses articulation information to simplify the non-linearity that
the cubature scheme must approximate.

3 Simulation Preliminaries

Notation: We will denote vectors in bold lower case, e.g. x, and
matrices in bold upper case, e.g. K. Non-linear functions will be
denoted with an argument, e.g. f(x). It is important to distinguish
between full-rank and reduced-order quantities, so full-rank quanti-
ties will be denoted with anN , and reduced-order with an r. For ex-
ample, our tetrahedral meshes contain N vertices and 3N degrees
of freedom (DOFs), but the reduced-order subspace we efficiently
simulate within has rank r, where r � N . We use a tilde to denote
a reduced-order quantity, e.g. x̃ is a reduced version of x. We will
use script to denote sets, e.g. C to denote a set of cubature points.

Subspace Projection: We will first review the subspace projec-
tion of an elastic deformation problem. We initially describe a qua-
sistatic formulation:

f(x) = −fe − fs. (1)

Here, x ∈ R3N is a node displacement vector, f(x) ∈ R3N is a
material force response function, and fe ∈ R3N denotes arbitrary
external forces. The fs ∈ R3N term denotes forces that arise from
self-contact, and is the primary quantity that we are concerned with
in this paper. We will introduce dynamics later (§5.2), but all of the
simulation difficulties are already present in this formulation.

Let us temporarily assume that f(x) is linear,

Kx = −fe − fs, (2)

where K ∈ R3N×3N is a material stiffness matrix. The simulation
of this equation can be drastically accelerated by using a subspace
basis U ∈ R3N×r . This basis can be obtained using a variety of
methods, such as performing PCA on existing full-rank simulation
“snapshots” [An et al. 2008], or static analysis of the underlying
deformable body mesh [Barbič and James 2005; von Tycowicz et al.
2013]. A much smaller “reduced” version of K can be computed
via projection, U>KU = K̃ ∈ Rr×r . Equivalent projections can
be performed on the vectors, U>x = x̃ ∈ Rr , to obtain a final
(linear) reduced-order quasistatic equation:

K̃x̃ = −U>fe −U>fs. (3)

Once all the projections have been performed, x̃ can be solved for
very efficiently, as the main computational challenge in the full-
rank case is a linear solve with respect to K. Now K̃ can be solved
very quickly, or even explicitly inverted once as a pre-process. This
is the projection-based version of subspace simulation [Pentland
and Williams 1989].

Subspace Cubature: Most realistic material models are not linear,
so we now drop the assumption that f(x) = Kx. Important cases
such as the St. Venant-Kirchhoff material model can still be written



as polynomials, which permit the projection approach to be applied,
albeit using higher order tensors [Barbič and James 2005].

However, a variety of other materials cannot be written in this form,
particularly the co-rotational material model we use in this paper
[McAdams et al. 2011]. The main issue is that per-element polar
decompositions must be performed, which are non-trivial to formu-
late as a tensor. The extensions introduced by Stanton et al. [2013]
do not appear to provide any assistance in this case.

Fortunately, the cubature approach to subspace simulation can be
used to efficiently compute arbitrary non-linear f̃(x̃) terms [An
et al. 2008]. Instead of projecting a tensor, the cubature approach
approximates the underlying function using a carefully weighted
set C of C “cubature points”:

f̃(x̃) ≈
C∑

i=1

wi ·U>i fi(Uix̃). (4)

Here, wi is a scalar cubature weight applied to sample i, Ui ∈
R12×r is the rows of U that correspond to the vertices of tet i,
and fi is a point-sampled version of the material force function that
computes the material forces on the vertices of the ith tet.

Connections between Eqn. 4 and the compressive sensing literature
have been observed [von Tycowicz et al. 2013], and this perspec-
tive provides some intuition. Similar to how the Fourier transform
of a Dirac delta yields a function with global support, transforming
a point sample fi(Uix̃) into the subspace U also yields a global
function. The question is whether a global function f̃(x̃) can be
approximated by projecting a small number of samples. The sub-
space modes of U were constructed by performing PCA, which
succinctly parameterizes all previously seen examples of f(x), so
it is reasonable to expect that within this subspace, some succinct
version f̃(x̃) can be discovered.

The cubature approach has been successfully applied to a wide vari-
ety of non-linearities, including several non-linear material models
[An et al. 2008], and the quadratic term in the inviscid Euler equa-
tions [Kim and Delaney 2013]. In our current work, we have found
that it can be applied to the material model of interest [McAdams
et al. 2011], and more importantly, to self-collisions.

The Subspace Self-Collision Problem: We now have the subspace
simulation equation:

f̃(x̃) = −U>fe −U>fs. (5)

The f̃(x̃) term can be computed efficiently using Eqn. 4. Efficient
computation of external forces is the focus of previously discussed
works [Barbič and James 2008; Harmon and Zorin 2013], so the
question we are interested in is: Can we compute U>fs efficiently?

The methods used for external forces (i.e. U>fe) could be applied,
but this would discard much of the knowledge we have of fs. The
variety of possible self-contact forces is largely constrained by the
articulation limits on the skeleton, and while extreme self-contact
configurations are possible (e.g. the character being crushed in a
trash compactor) the vast majority of forces will repetitively occur
at a predictable set of surface vertices. We will use this knowledge
to design an efficient cubature scheme for U>fs in Section 4.

Penalty Force Formulation: Like many recent works [Tang et al.
2012; McAdams et al. 2011; Harmon et al. 2009], we use a penalty
force formulation to resolve contacts. For each penetrating surface
triangle and vertex, (tp,vp), we find the surface point vs on the
triangle tp that is closest to vp and apply a force to vp,

fp = kc · ka ·N(vs − vp), (6)

where kc is a constant spring stiffness and ka is the average of the
area of tp and the area of the surface triangles in the one-ring sur-
rounding vp. The N ∈ R3×3 anisotropy term is from McAdams et
al. [2011], and defined as

N = (1− α)n · n> + αI, (7)

where α ∈ [0, 1], I ∈ R3×3 is an identity matrix, and n is the
outward unit contact normal, n =

(vs−vp)

|vs−vp| . The force at each ith
vertex of the triangle tp is:

fi = −βi · kc · ka ·N(vs − vp), (8)

where βi is the barycentric coordinate associated with triangle ver-
tex i and vs. Section 5.1 contains further details on collisions.

Domain Decomposition: As is common in articulated subspace
simulations [Yang et al. 2013; Barbič and Zhao 2011; Kim and
James 2011], we will assume that the mesh has been partitioned
into subdomains. We used a simple nearest-neighbor strategy to
associate each tet with the nearest bone, but our algorithm is ag-
nostic to the partitioning method, so other methods could be used.
Each subdomain has its own subspace basis and the interfaces are
coupled using penalty-based forces.

4 A Self-Collision Cubature Scheme

Self-contacts on articulated meshes occur mainly due to the motion
of the underlying skeleton. We still start by directly applying the cu-
bature approach to these self-collisions. The algorithm will produce
unacceptable results, but motivate a more sophisticated scheme in-
spired by Pose Space Deformation [Lewis et al. 2000].

4.1 A Direct Cubature Scheme

For expository purposes, we will focus on a single domain, x, and
examine the collisions that arise between itself and another do-
main, y. We emphasize that these include intra-domain collisions

between the surface of x and itself that arise
due to the motion of y, not just the collisions
between x and y. An example of our final al-
gorithm handling such collisions is inset on the
left. The hand contains 10 domains, visualized
by different colors. Note that the red domain in
the middle of the palm is colliding with itself.
We denote the full-coordinate ranks of x and y
asNx andNy , and their reduced ranks as rx and

ry . Each domain will have its own basis, Ux and Uy .

The fs self-collision term for domain x is intrinsically a force. Since
the cubature approach was successfully applied to the other force
terms such as the f(x) material force term, it is reasonable to ex-
pect that it will be able to generalize to this term as well. Within this
context, a single cubature point p is represented by the self-collision
force, fs(tp,vp) ∈ RNx+Ny , with only 12 non-zero entries aris-
ing from the collision of a single vertex, vp ∈ R3, with a triangle,
tp ∈ R9. Note that in this context, a “cubature point” no longer
corresponds to a literal spatial point or tetrahedron, but rather a ge-
ometric pair. With this definition established, we can compute a
self-collision cubature scheme using the same training algorithm
from An et al. [2008].

At a high level, the training problem we are trying to solve is as
follows. We have a set of self-collision forces that were generated
from a large number of contact pairs, and would like to approxi-
mate these forces by instead using a weighted subset of these pairs.
The primary question of interest is: how many pairs are needed to
achieve a desired accuracy?



We will limit ourselves to training details that will be relevant when
later examining why this direct scheme fails. We have a set of T
training snapshots (i.e. example deformations), which we obtain by
running a series of full-rank simulations. Each t-th snapshot pos-
sesses a self-contact force vector, f ts ∈ RNx+Ny . A reduced version
of this vector can be obtained via projection, f̃ ts = S>f ts , where
S ∈ R(Nx+Ny)×(rx+ry) and is constructed as the block matrix:

S =

[
Ux 0
0 Uy

]
. (9)

The goal of the training stage is to locate a small cubature set C
consisting of C collision pairs that, when evaluated,

f̃ ts ≈
C∑

p=1

wp · S>p fs(ttp,vt
p), (10)

approximate all T self-collision forces to some desired degree of
accuracy. Here, (ttp,vt

p) denotes a collision pair deformed accord-
ing to the displacement vector from the corresponding snapshot t,
and Sp denotes a concatenation of the rows in S that correspond to
vp and the vertices in tp.

As with material forces (Eqn. 4), there is reason to believe that a
sparse approximation exists. For example, imagine that only a sin-
gle self-collision example had been observed, and its fs was added
as the final column in Ux. A single cubature point would suffice,
provided its projection produced a vector composed entirely of ze-
ros, except for a final non-zero component. The wp would account
for any scalar discrepancy, and the global force would be effectively
represented by a single point.

Promising candidates for C can be located in a variety of ways, in-
cluding a greedy search [An et al. 2008], importance sampling [Kim
and Delaney 2013; Harmon and Zorin 2013], or HTP [von Tycow-
icz et al. 2013]. We used importance sampling in this work. Once
candidates are located, a Non-Negative Least Squares (NNLS)
solve assigns each candidate a weight (wp in Eqn. 10). First, the
projected self-collision force produced by each p-th candidate at
each t-th snapshot is computed,

S>p fs(t
1
p,v

1
p)

S>p fs(t
2
p,v

2
p)

. . .
S>p fs(t

T
p ,v

T
p )

 = gp. (11)

These columns are concatenated to form the Aw = b system[
g1 g2 . . . gC

]
w =

[(
f̃1s

)> (
f̃2s

)>
. . .

(
f̃Ts

)>]>
,

(12)
where w =

[
w1 w2 . . . wC

]> is the vector of weights that
is solved for. This system can then be sent to any standard NNLS
solver [Chen and Plemmons 2007].

4.2 Analysis of Negative Results

We found that the cubature sets discovered by this direct cubature
method are not immediately useful. In order to converge to an ac-
ceptable level of relative error of 1% to 5%, between 30% and 40%
of all of the collision pairs in the training snapshots had to be added
to the cubature set. These sets clearly did not have O(r) cardinal-
ity, and did not significantly accelerate self-contact computation.
Alternate candidate selection approaches such as HTP [von Tycow-
icz et al. 2013] may be able to decrease the cardinality by a small
constant, but the asymptotic performance is unlikely to change.

Infrequent events in the training set were captured poorly.

In Figure 4 for example, the top pad of the finger
(left image, in blue) comes into contact with the
bottom third of the finger (left image, in red) only
in the final frames of our training set. Since these
forces do not appear in many snapshots, the NNLS
solver treats them as unimportant, and the final
cubature set approximates them poorly. While it

might be possible to re-weight these examples, such an approach
would essentially second-guess the PCA and NNLS solvers, which
seems unappealing. Clearly, this naı̈ve application of the cubature
approach is not sufficient.

The intuition from §4.1 breaks down because it applied to a single
self-collision, f̃ ts , not the set of all self-collisions. While a single
approximation may be sparse, the set of all approximations may be
spatially disjoint, since the contact regions can be disjoint for two
radically different poses. The union of the sparse approximations
can then be dense if sparsity structures do not share any common-
ality. We can quantify this intuition as follows.

Sparsity of the training matrix A: The training column gp for
any collision pair is likely to contain mostly zeros, since the pair is
likely in collision for only a small number of snapshots. Therefore,
many of the O(T ) rows in the A matrix (Eqn. 12) will also consist
solely of zeros. Unless a collision pair is added to the cubature set
that specifically introduces non-zero entries into these rows, their
relative errors will be 100%. This explains why the error only be-
came acceptable for cubature sets of size O(N), or more precisely
O(P ), where P is the total number of collision pairs in all of the
training snapshots; it is threshold where the number of non-zero
rows in A had been sufficiently increased. We can conclude from
this that a sparse training matrix will produce a dense cubature set.

Difficulty of learning the non-linear function: Eqn. 6, the non-
linear force being learned, appears to be essentially a cubic func-
tion. However, the function actually contains an additional non-
linearity. We can write a more general force term,

fp(tp,vp) = H(tp,vp) · kc · ka ·N(vs − vp), (13)

where H(tp,vp) is a Heaviside function defined as:

H(tp,vp) =

{
1 if tp and vp collide
0 otherwise . (14)

This new term significantly increases the non-linearity, as its de-
pendence on x indirectly introduces the complexity of the material
model from Eqn. 1. The binary nature of the term also shows that
while the force isC0 continuous, it contains aC1 discontinuity. We
will need to address the complexity introduced by this term.

4.3 A Pose-Space Cubature Scheme

The preceding analysis led us to design a method that leverages the
same intuition that underlies Pose Space Deformation (PSD) [Lewis
et al. 2000]. Instead of trying to capture a difficult non-linearity in
its entirety, we interpolate over a sparse set of solutions where the
non-linearity is known to be efficiently resolvable. In the case of
PSD, a set of artist-sculpted examples are interpolated. In our case,
we interpolate over a set of per-pose cubature schemes.

Per-Pose Cubature: Instead of computing a single cubature
scheme that fits a large, sparse training matrix, we compute multi-
ple cubature schemes that each fit small, dense matrices. At a high
level, the primary difference between this training regimen and the
previous one is that we are no longer trying to find a single cuba-
ture scheme that can approximate every self-collision force in the
training set. Instead, we compute one cubature scheme for every



Figure 2: A cylinder articulated with a single joint. Left in each pair: Without self-contact. Right in each pair: With self-contact.
Penetrations obscure the characteristic crease along the contact, especially in the subsurface scattering rendering. We accelerate self-contact
by 52× and only take up 46% of the total computation time instead of 96%.

example pose in the training set. If a pose is encountered at run-
time that was not in the original training set, we can use a PSD-like
process to interpolate between the nearest schemes.

The simplest training matrix that we can construct that is guaran-
teed to be dense is the one for a single training snapshot. For ex-
ample, if we define the projected force for the 1st snapshot for the
collision pair p as S>p fs(t

1
p,v

1
p) = g1

p, we can write the training
matrix: [

g1
1 g1

2 . . . g1
C

]
w1 = f̃1s . (15)

We abbreviate this system to A1w1 = f̃1s . Note that the right
hand side now contains a single self-contact force sample, and that
the training matrix dimensions are A1 ∈ Rr×C instead of A ∈
RrT×C , essentially making A1 a subset of rows from A. This
training matrix will automatically be dense. All of the cubature
selection strategies (greedy, importance sampled, or HTP) project
potential candidates onto the residual vector r = A1w1 − f̃1s . A
collision pair that produced a zero-valued training column would
also produce a zero-valued projection, and would therefore never
be considered promising enough to be added to the cubature set. As
predicted, we found that the training stage now produced cubature
sets with O(r) cardinality for each input snapshot (Figure 3).

Figure 3: Left: Final frames from Figs. 2 and 4. Middle: Dense,
full-rank contact points. Right: Our cubature scheme only needs
to detect and resolve a sparse subset of these points.

Cubature Interpolation: We now have T cubature sets to inter-
polate at runtime. While the direct cubature scheme contained
a difficult-to-learn Heaviside function, we now have the opposite
problem that this non-linearity has been aggressively pre-processed
away. At runtime, each cubature set assumes that the Heaviside
functions have already been resolved, and all that remains is for the
contact forces (Eqns. 6 and 8) to be computed. This is not an issue
if the character only takes on poses that are exactly the same as the
training snapshots, but much of the appeal of subspace methods is
that they can generalize to motions that are similar to, but distinct
from, those in the training set. A method is needed for interpolating
between cubature sets when a pose is encountered that was not seen
during training. During this interpolation,H(tp,vp) is evaluated at
each cubature point, as it is unknown whether the collision occurs
at this intermediate pose.

We perform the interpolation as follows. At runtime, we locate the
closest cubature set Ct of all T cubature sets, by computing the
distance between some feature vector of the current pose, qc ∈ R6,
and the corresponding qi ∈ R6 for each of the cubature sets:

t = argmin
i∈T

(dist(qc,qi)) . (16)

where “dist” denotes a distance function. We have some freedom in
designing both “dist” and the pose vectors, q. If domains x and y
are connected by a joint, quaternions could be used (q ∈ R4), and
a natural distance measure would be 1 − ‖qc · qi‖. However, if x
and y are not adjacent, a translation needs to be added to q. This
complicates the distance measure, because while quaternions are
normalized, translations are not, and a large value can spuriously
dominate the distance measurement. Separate weightings could be
added to rotation and translation, but such a scheme would be ad
hoc.

We use a PCA method [Shabana 1990] to address this issue. In
an offline stage, for each training snapshot, we transform the sur-
face positions of domain y into x’s local coordinates system. We
perform PCA on these positions and extract the six most signifi-
cant components, Ur . For an unconstrained mesh, these compo-
nents will have principal values of zero, as they correspond to the
zero-energy, infinitesimal rigid transformation modes of the mesh
(see e.g. [Idelsohn and Cardona 1985], Appendix D in [Barbič and
James 2005], or §3.1 in [O’Brien et al. 2002]). The subspace co-
ordinates qi for each training snapshot i are computed and stored
along with Ur . The distance between two poses c and i can now
be defined as dist(qc,qi) = ||qc − qi||2. At run time, we again
transform the surface positions of y into the local coordinates of x,
and project it using Ur to obtain qc.



We find the two nearest neighbors from Eqn. 16 by using a brute
force search. The subspace forces from the two schemes are then
interpolated based on their relative distances. Because the number
of snapshots T is small in all of our examples (see Table 1), the
brute force search takes a negligible amount of time. If T were
larger and created a bottleneck, more efficient methods [de Berg
et al. 2008] could be used.

Discussion: This approach was inspired by Pose Space Deforma-
tion, but the resulting algorithm is fairly different. We use a linear
blend instead of radial basis functions, as we found they were more
appropriate for our non-linearities. Each cubature scheme is local-
ized to a pair of domains, which is reminiscent of Weighted PSD
[Kurihara and Miyata 2004], and suggests that a non-partitioned al-
gorithm that can be applied to monolithic subspace methods [Kry
et al. 2002; Kim and Pollard 2011] should also possible. The fi-
nal outputs of our algorithm are generic subspace forces and stiff-
nesses, which do not fundamentally depend on the existence of a
spatial decomposition. We leave a more in-depth investigation into
these issues and their relationship with PSD as future work.

5 Implementation and Results

5.1 Implementation

Solvers: All of our simulations used implicit Newmark as the
time discretization. We used the interior point optimizer IPOPT
[Wächter and Vigerske 2005; Wächter 2002] as our non-linear
solver, as we found its wall-clock time to be faster than Newton-
Raphson. In the inner loops of the full-rank and reduced-rank
solves, we respectively used the highly tuned HSL solvers MA86
[Hogg and Scott 2010] and MA57 [Duff 2004]. We found that these
were faster than conjugate gradient, and outperformed even an im-
proved Incomplete Cholesky preconditioner [Jones et al. 1995].

Hardware: All simulations were run on a 12-core, 2.66 Ghz Mac
Pro with 96 GB of RAM. Our own code and the HSL solvers both
leveraged OpenMP for parallelization. All of the full-rank simula-
tions ran on 12 threads. For each subspace example, we manually
optimized the number of threads to fit the number of domains.

Basis Construction: To obtain meaningful forces, we explicitly
enriched the subspace basis U with the self-contact forces. We
computed the self contact forces for a variety of training poses, and
perform a PCA on the resulting fs vectors. We then concatenate the
results to U and re-orthogonalize using modified Gram-Schmidt.
We found it necessary to add the self-contact force vectors to the
front of U. Otherwise, the locality of the forces would become
entangled with the global support from other columns in U.

Collision Detection: During full-rank simulation, we used De-
formCD [Curtis et al. 2008] for collision detection. This algorithm
uses a bounding volume hierarchy, specifically axis-aligned bound-
ing boxes (AABBs), for the broad phase, and the Representative
Triangles during the narrow phase.

For subspace collision detection, we also used AABBs for the broad
phase, and then brute-force point-tet intersection tests for the nar-
row phase. We built two bounding volume hierarchies (BVH) for
each domain, one for the cubature vertices and one for the tetra-
hedra. At each timestep, the cubature vertices from one domain x
was tested against all of the tetrahedra from another domain y (for
intra-domain collisions, x = y). We could have only performed
collisions against the triangles tp from the training set, but we found
this to be too conservative for high-resolution meshes, as the cuba-
ture vertex vp could easily penetrate a nearby triangle instead. The
cubature weights were still effective, since nearby triangles gen-
erate similar penalty forces. We also attempted to use BD-Trees

[James and Pai 2004], but found our BVH was faster. The deforma-
tions required many leaf-level updates, and the Ux̃ multiply at each
BD-Tree node update quickly became a bottleneck. As we were
simulating high resolution meshes, we assumed that edge-edge and
vertex-edge contacts are negligible, but our algorithm could be ex-
tended to handle these case as well.

As anticipated, the cardinality of the cubature sets was much
smaller than the complete set of contact points, and reduced the
number of necessary collision tests considerably (Table 2). The cu-
bature schemes sufficiently accelerated the simulation that collision
detection dominated the running time (∼90%). We experimented
with diminishing this bottleneck by using a low-resolution proxy
of the tetrahedral mesh for the broad phase of subspace collision
detection. This accelerated the phase significantly, and as the high-
resolution mesh is queried during the narrow phase, the impact on
the final results was minimal. To facilitate comparisons, all of the
timings given in Table 2 and Figs. 6 and 7 use this proxy geome-
try. We did not use the low-resolution proxy during the full-rank
precomputation, as collision detection was not the main bottleneck,
and instead took between 16-27% of the running time. The increase
in computational cost instead appeared in the form of more complex
non-linear solves.

Collision Resolution: We called the same collision resolution code
for both the reduced- and full-rank simulations. For each penetrat-
ing vertex vp and penetrated tet h, we used barycentric interpola-
tion to transform vp to its position inside of the rest-pose version
of h, vh. We obtained the surface point vs and surface triangle tp
closest to vh using the signed distance field of the rest pose [Hirota
et al. 2001; Teran et al. 2005]. Barycentric interpolation was used
to obtain the deformed surface position, vs. The resulting vs and
vp were then sent to Eqns. 6 and 8.

Material Model: In all of our examples, we used the co-rotational
material, along with indefiniteness correction, from McAdams et
al. [2011]. Our simulations were performed over tetrahedral meshes
instead of hexahedral meshes, so we did not find it necessary to per-
form their stabilization step, as the deformation nullspace of a tetra-
hedron is much smaller than that of hexahedron (3 instead of 15).
The cubature approach successfully approximated the co-rotational
material model with minimal intervention.

Example Full-Rank Time
Per Frame

Reduced-Rank
Time Per Frame

Speedup

Cylinder 7.82 s 20 ms 391×
Finger 15.90 s 53 ms 300×
Arm 20.86 s 77 ms 271×
Hand 28.45 s 171 ms 166×

Table 1: Algorithm performance compared to full-rank solves.

5.2 Results

In our examples, we sparsely sampled the articulation by comput-
ing T samples in joint space (Table 1). For each pose, we ran a
full-rank quasistatic simulation with self-contact detection and res-
olution, and a pose-space cubature scheme was computed to within
5% training error. In all cases, the subspace simulations ran two
orders of magnitude faster than full-rank solves (Table 1).

Cylinder: We deformed an articulated cylinder containing 118,389
tetrahedra into a highly colliding state in Fig. 2. The mesh con-
tained 2 domains, and was trained on T = 12 examples for a final
rank of r = 20. Without cubature, the subspace simulation spent
up to 96% of its frame computation time detecting and resolving
collisions. With it, self-contact computation never exceeded 46%



Example Using Reduced
Self-Contact?

Mean SC Time
Per Frame

Max SC Time
Per Frame

Max # of Colli-
sions

Collision Com-
plexity Reduction

Mean
Speedup

Max
Speedup

Cylinder No 114 ms 415 ms 4127
Cylinder Yes 7 ms 8 ms 15 275× 16× 52×
Finger No 168 ms 517 ms 4930
Finger Yes 17 ms 26 ms 81 61× 10× 20×
Arm No 182 ms 407 ms 1264
Arm Yes 26 ms 37 ms 74 17× 7× 11×
Hand No 59 ms 782 ms 3025
Hand Yes 32 ms 155 ms 445 7× 2× 5×

Table 2: Performance of our self-contact (SC) algorithm compared to a subspace simulation that does not use self-contact cubature.

Figure 4: Left column: Without self-contact. Right column: With
self-contact. A finger is shown with subsurface scattering (top), and
with checkerboard texturing and a highlighted cross-section (bot-
tom). Extreme penetrations occur without our self-collision cuba-
ture; the full extent can be seen in the cross-section. As with Figure
2, the characteristic crease from the contact is far less visible.

(Figure 6). Self-contact in the most highly colliding frame was ac-
celerated by a factor of 52×.

Finger: We simulated the complex self-collision of a finger con-
taining 248,869 tetrahedra in Fig. 4. The mesh contained 3 do-
mains, and trained on T = 17 examples for a final rank of r = 60.
This example shows our pose-space cubature scheme capturing in-
frequent contacts between initially non-adjacent domains; the exact
configuration that defeated the direct cubature scheme (§4.2). With-
out cubature, self-contact consumed up to 96% of the frame time,
but the cubature version never exceeded 44%. The most highly col-
liding frame was accelerated by a factor of 20×.

Arm: We simulated the collision of an arm with a body on a mesh
composed of 171,492 tetrahedra (Fig. 5). The mesh contained 5 do-
mains, and trained on T = 27 examples for a final rank of r = 161.
All of the initial training data was quasistatic. Without cubature,
self-contact took up to 89% of the time, while our version never
exceeded 43%. The most highly colliding frame was accelerated
by 11×.

This example shows self-contacts resolved over a wide spatial ex-

tent, and subspace dynamics added as a post-process. Dynamics
were activated using standard methods, i.e. by adding reduced-
order mass and damping terms to the left hand side of Eqn. 5:
M̃˜̈x+ C̃˜̇x+ f̃(x̃) = −U>fe −U>fs. Newmark integration (see
Appendix C of Barbič and James [2005]) was then applied. Other
methods could also have been used, as our method is agnostic to the
underlying time integration and domain decomposition methods.

Hand: We simulated a hand containing 458,071 tetrahedra in a va-
riety of poses. The mesh contained 10 domains, and was trained on
T = 120 examples for a final rank of r = 300. The self-contacts in
this example were sparser and less persistent than those in the other
examples, so the performance is noisier (Fig. 6). Without cubature,
self-contact took up to 72% of computation, while our computation
never exceeded 42%. The most highly colliding frame was acceler-
ated by 5×. We also show an example of a collision very different
from those seen during cubature training in the video. As expected,
the collision is missed entirely, and the deformations begin to ex-
hibit subspace artifacts. However, the simulation remains stable.

Discussion: Predictably, the largest speedups occurred when the
largest number of primitives were in self-collision (Table 2). Faster
collision detection could improve the performance of the simula-
tions without cubature, but these methods would apply equally well
to the cubature versions, so we expect that the relative performances
would remain similar.

Direct comparisons to other methods are difficult due to implemen-
tation and hardware specifics, but rough, order-of-magnitude com-
parisons are possible. McAdams et al. [2011] perform full-rank
simulations of equivalent geometric complexity as ours (∼100K el-
ements), but our performance is a clear improvement (5 s vs. 53
ms). Their algorithm is complementary and could be used to ac-
celerate our precomputation. Other, faster methods use geometries
that are orders of magnitude simpler, e.g. 4160 [Liu et al. 2013] and
8619 [Kim and Pollard 2011] elements. Our method offers clear
advantages for both computational and geometric complexity.

6 Conclusion

We have shown that the cubature approach can be used to accelerate
self-contact computation in articulated simulations. The standard
approach can fail if the non-linearity of the underlying function is
too severe, so we formulated a pose space variant to address this
limitation. Interestingly, we found that the sparsity of the cubature
training matrix serves as a useful heuristic for determining if the
underlying function is “too non-linear.”

As observed by others [Harmon and Zorin 2013], a comprehensive
theory of cubature sampling is still an open problem. We did not
present such a theory here, but we hope our results and observations
can assist in the formation of such a theory in the future. Finally,
the high resolutions supported by our algorithm enable the efficient
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Figure 6: Percentage of time the subspace simulation spends in self-contact detection and resolution, with and without cubature. Without
cubature, the time spent routinely exceeds 90%. Our method consumes a maximum of 46%, bringing it to parity with the rest of the simulation.
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Figure 7: Time spent in self-collision detection and resolution, with and without cubature. The lower boundary of each shaded area is the
time spent in self-collision detection, and the upper boundary shows the total time when resolution is added. Note that we have used a log
scale, because otherwise the additional time added by collision resolution when using cubature would be difficult to see.

Figure 5: We can quickly simulate subspace dynamics, even if the
input data was quasistatic. The character’s arm begins outstretched
(top left), but later hits the body (top right), causing it to shake.
Please see the video to view the overall dynamics. As in Fig. 3, the
cubature scheme effectively sparsifies the contact (bottom row).

simulation of high-frequency deformations in inhomogeneous ma-
terials. However, spatially tuning material parameters to achieve
specific effects remains a challenge.
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BARBIČ, J., AND JAMES, D. L. 2008. Six-DoF haptic rendering
of contact between geometrically complex reduced deformable
models. IEEE Transactions on Haptics 1, 1 (jan.-june), 39–52.
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