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Stable Fluids	


•  Diffusion	

•  Projection	


•  Advection     ???	
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Finite Difference Advection 	

[Treuille et al. 2006]	
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[Stanton et al. 2013]	
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Optimizing Cubature for Efficient Integration of 
Subspace Deformations [An et al.] 2008	




The Cubature Approach	
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64 x 48 x 64	




The Cubature Approach	


64 x 48 x 64	


Six days!	
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Non-Negative Least Squares	
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The Greedy Algorithm	




Lawson-Hanson NNLS solve:	


Greedy search for P cubature points:	


O(P3)
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Importance Sampling	
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Six days	
 30 minutes	




Example 1	
 Example 2	
 Example 3	
 Example 4	


L2 error, 
Iteration 1	


0.0428803	
 0.0592719	
 0.0409149	
 0.0330917	


L2 error, 
Iteration 2	


0.0148716	
 0.0184463	
 0.0145316	
 0.0118481	


L2 error, 
Iteration 3	


0.0107379	
 0.0112989	
 0.0106133	
 0.00650847	


L2 error, 
Iteration 4	


0.00866083	
 0.00865156	
 0.00871744	
 converged	


Total Time	
 01h 18m 07s	
 03h 05m 58s	
 09h 28m 29s	
 05h 29m 02s	




Greedy search for P cubature points:	


Importance sampled cubature: 	


O(P4 )

O(P3)



[Harmon and Zorin 2013]	
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Fast Diffusion-Projection	


 

u2 = Du1
d = W u2
p = X-1 d
ut+1 = u2 + Y p
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Fast Diffusion-Projection	


 

u2 = Du1
d = W u2
p = X-1 d
ut+1 = u2 + Y p

 ut+1 = Z u1



Internal Obstacles	




Iterated Orthogonal Projection	

[Molemaker et al. 2008]	




Iterated Orthogonal Projection	

[Molemaker et al. 2008]	
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Iterated Orthogonal Projection	

[Molemaker et al. 2008]	
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Stam Plume, 200×266×200	

06h 57m 30s	






Stam Plume example	


Solver Only: 	
 	
 	
 	
 	
18ms 	
9326x faster	


With Vel. Recon.: 	
 	
 	
4.2s 	
 	
39x faster	


Total preprocessing: 	
 	
09h 50m 23s	


12-core, 2.66 Ghz Mac Pro	






MacCormack example	


Solver Only: 	
 	
 	
 	
 	
96ms 	
1764x faster	


With Vel. Recon.: 	
 	
 	
5.6s 	
 	
30x faster	


Total preprocessing: 	
 	
09h 27m 16s	




Dirichlet obstacles, 276 x 276 x 138	

03h 35m 00s	






Dirichlet example	


Solver Only: 	
 	
 	
 	
 	
130ms 	
 	
661x faster	


With Vel. Recon.: 	
 	
 	
5.1s 	
 	
 	
17x faster	


Total preprocessing: 	
 	
19h 00m 58s	




Neumann obstacles, 175 x 175 x 350	

03h 27m 30s	




Vorticity confinement = 20, originally 1.5	




Neumann example	


Solver Only: 	
 	
 	
 	
 	
34ms 	
 	
2435x faster	


With Vel. Recon.: 	
 	
 	
5.7s 	
 	
 	
14x faster	


Total preprocessing: 	
 	
18h 53m 55s	
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Contributions	


•  Fast re-simulation of an existing simulation	

•  A cubature approach to subspace advection	


•  Practical cubature training via importance 
sampling	


•  Internal obstacles via subspace iterated 
orthogonal projection	




Limitations	


•  Memory intensive (Mac Pro had 96 GB)	

•  Time-consuming pre-process	


•  How well does it generalize?	




Future Work	


•  Basis enrichment (XFEM?)	


•  Better basis compression 	

	
(HSS?)	


•  Liquid re-simulation?	

[Seo et al. 2011]	


[Richardson et al. 2011]	
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