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Figure 1: “Party” scene: Three hyper-elastic and two elasto-plastic objects are squashed into a complex contact configuration, all while
fully two-way coupled with the surrounding fluid. All of the objects and the fluid are represented on a 200× 180× 200 Eulerian grid.

Abstract

We present a new method that achieves a two-way coupling be-
tween deformable solids and an incompressible fluid where the un-
derlying geometric representation is entirely Eulerian. Using the
recently developed Eulerian Solids approach [Levin et al. 2011],
we are able to simulate multiple solids undergoing complex, fric-
tional contact while simultaneously interacting with a fluid. The
complexity of the scenarios we are able to simulate surpasses those
that we have seen from any previous method. Eulerian Solids have
previously been integrated using explicit schemes, but we develop
an implicit scheme that allows large time steps to be taken. The in-
compressibility condition is satisfied in both the solid and the fluid,
which has the added benefit of simplifying collision handling.

1 Introduction

Two-way solid-fluid coupling produces visually and mechanically
distinctive behaviors such as a ball pushing smoke and water away
while it simultaneously deforms under the fluid’s load. The correct
handling of this coupling also leads to realistic behavior such as a
bowling ball falling more quickly than a feather due to drag forces.
Thus, methods for simulating complex scenes that couple solids
and fluids can be critical for generating compelling visual effects
and accurately simulating the world around us.

Solid simulation, particularly hyperelastic solids, predominantly
uses a Lagrangian representation [Irving et al. 2007; Wang et al.
2010; Stomakhin et al. 2012; Sin et al. 2013; Bouaziz et al. 2014],
while single-phase fluids such as smoke are often simulated on an
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Eulerian grid [Mullen et al. 2009; Zhu et al. 2013; Zhang et al.
2015]. As a result, a variety of methods have been developed that
attempt to couple these two disparate representations [Chentanez
et al. 2006; Robinson-Mosher et al. 2008] using a suite of numeri-
cal techniques and geometric operations.

However, the idea of a unified solver, where the underlying geome-
try is either entirely Lagrangian or entirely Eulerian, is an appealing
one. It removes the need to negotiate between different coordinate
systems, and promises to simplify both the design and implemen-
tation of the overall algorithms. To date, most attempts at such a
solver have been Lagrangian [Solenthaler et al. 2007; Akinci et al.
2013; Clausen et al. 2013; Macklin et al. 2014], because SPH-like
[Macklin and Müller 2013; Ihmsen et al. 2014] and FLIP-like [Jiang
et al. 2015] methods can be used to make the fluid representation
Lagrangian as well.

In this work, we take the opposing perspective and explore the cou-
pling of fully Eulerian solids and fluids. This is made possible by
the recent work of Levin et al. [2011], which presents a method for
simulating hyperelastic solids within an Eulerian framework. By
incorporating this method into an Eulerian fluid solver, we are able
to resolve complex contact scenarios between multiple solids and
a single-phase fluid (Fig. 1). In order to enable large timesteps in
the presence of difficult contact configurations, we present a semi-
implicit method for stepping the system forward in time. As in the
cases of cloth and hair [Sifakis et al. 2008; McAdams et al. 2009],
we empirically observe that the incompressibility of the fluid nat-
urally assists in collision handling. The final algorithm does not
require the generation or maintenance (i.e. remeshing) of a well-
conditioned tetrahedral mesh, and maintains the robustness and
ease of use of a purely Eulerian technique. Our method is able
to simulate complex collision scenarios between solids and fluids
that we have not seen from any previous approach.

Our work makes the following technical contributions:

• A unified, Eulerian framework for simulating fully coupled
fluids and deformable solids

• A semi-implicit solver for Eulerian Solids

• A method for satisfying incompressibility for both the solid
and fluid regions of the simulation

• A collision resolution scheme for multibody frictional contact



2 Related Work

Beginning with the immersed boundary method [Peskin 1972], sim-
ulating the coupled motion of solids and fluids has a long history in
both graphics and engineering. In graphics, there has been much
work coupling fluids to rigid bodies [Takahashi et al. 2002; Carlson
et al. 2004; Klingner et al. 2006; Batty et al. 2007], as well as rigid
and deformable shells [Guendelman et al. 2005].

Chentanez et al. [2006] modeled the deformable solid as an unstruc-
tured tetrahedral mesh and showed how to couple it to an Eulerian
fluid, which could be represented as either a regular grid or an-
other unstructured mesh. This approach requires a mesh generation
stage, and the specific formulation required an asymmetric system
to be solved. This approach has been extended to fully Lagrangian
simulations of both the solid and fluid [He et al. 2012; Souli and
Benson 2013; Wick 2013], and has incorporated additional phe-
nomena such as phase transitions [Clausen et al. 2013] and porous
flow [Lenaerts et al. 2008]. Other methods have further investigated
Eulerian fluid discretizations and used sophisticated geometric op-
erations [Robinson-Mosher et al. 2008; Robinson-Mosher et al.
2009] as well as overlapping grids [Baaijens 2001] to couple the
grid velocities to a Lagrangian solid. Fast, approximate, position-
based methods have also been recently developed for real-time ap-
plications [Macklin et al. 2014], which can often need careful pa-
rameter tuning to generate realistic results.

Recently, the Material Point Method (MPM) [Stomakhin et al.
2014; Jiang et al. 2015] has become popular for simulating a num-
ber of mixed-phase phenomena. It shares some of the same advan-
tages of our approach, as it avoids the need for complex remeshing
schemes and geometric conversions. However, as mentioned by
Jiang et al. [2016], these schemes are known to have issues rep-
resenting hyperelastic materials, as artificial plasticity can creep
into the simulation. Our scheme naturally handles hyperelastic re-
sponse, even in the presence of a fluid, and still allows the user to
add plasticity if desired.

In order to avoid complicated meshing schemes, simulate elas-
tic objects accurately, and robustly resolve complicated collisions,
Levin et al. developed the Eulerian Solids methodology [2011].
With this technique in hand, it is natural to ask whether we can now
perform solid-fluid coupling in a purely Eulerian fashion. The clos-
est work to ours in the engineering literature is Kamrin et al. [2012],
which showed that a similar “reference map” method can be used
to couple deformable, elastic solids to weakly compressible flu-
ids. The approach has also been extended to handle non-frictional
contact between two objects [Valkov et al. 2015]. However, this
method does not handle incompressible fluids, large time steps or
complex contacts between a multitude of objects. Crucially, their
efficacy has also only been demonstrated on coarse 2D grids. In
contrast, we present a fully 3D Eulerian Solids-based solver that
couples an incompressible fluid to multiple deformable objects un-
dergoing frictional contact. By using an implicit time integration
scheme, we are able to take large timesteps.

3 Eulerian Solid and Fluid Preliminaries

Notation: We will denote vectors using bold lowercase, e.g. f , and
matrices using bold uppercase, e.g. M. Unbolded symbols repre-
sent scalars. Departing from the usual fluid simulation notation, we
use u to represent the displacement field of a solid object and in-
stead use v for velocity. A superscript to the left of a variable is
used to distinguish solid objects from fluid. Unlabelled vectors are
considered global, i.e. they contain both solid and fluid entries. A
superscript ? denotes intermediate states prior to advection, and an
overbar, e.g. x̄ denotes the reference configuration of variable x.

Eulerian Solids: In the interest of self-containment, we will give
a brief overview of Eulerian Solids, but full details can be found
in previous work [Levin et al. 2011; Fan et al. 2013]. The first
step of any continuum simulation of materials is to discretize the
deformation mapping, φ : x̄ → x from material space to physical
space. Eulerian Solids discretize the physical space as a regular grid
and store the material space coordinates as a field to be advected.
Rather than store the full material coordinates, we follow Fan et
al. [2013], and advect the displacement field u, which improves the
robustness of the method under large time steps.

The advected u is the key to the Eulerian solids approach, as it
allows the direct computation of the deformation gradient F using

F =

(
I− ∂u

∂x

)−1

. (1)

With this F, we can compute the forces inside a solid using any ar-
bitrary constitutive model. Crucially, only displacement fields with
zero deformation can yield F = I. This guarantees that an elas-
tic constitutive model will always generate forces that attempt to
return to a zero deformation state, and ensure an accurate hyper-
elastic simulation.

Eulerian Fluids: For completeness, we also give a brief overview
of fluids, but more details can be found in Bridson [2008]. The
equations for an inviscid, incompressible fluid are:

∂v

∂t
+ v · ∇v +

1

ρ
∇p = g,

∇ · v = 0.

(2)

The first equation is the momentum equation and the second is the
incompressibility constraint. Here, v is the velocity of the fluid, ρ
it the density, p the pressure, and g denotes external forces such as
gravity.

Approximating the derivatives using Eulerian finite differences is
straightforward, which makes them a popular method for simulat-
ing fluids. A basic solver is as follows:

∂v

∂t
+ v · ∇v = 0, (3)

∂v

∂t
= g, (4)

∂v

∂t
+

1

ρ
∇p = 0 such that ∇ · v = 0. (5)

Eqn. 4 adds the body forces and is often integrated explicitly.
Eqn. 5 is usually solved using a Helmholtz-Hodge decomposition
that projects out the divergent component of the velocity, and typi-
cally requires the solution of a Poisson problem.

The advection step, Eqn. 3, plays a key role in the stability of
the simulation. Semi-Lagrangian [Stam 1999] and Fluid-Implicit-
Particle (FLIP) [Brackbill and Ruppel 1986; Jiang et al. 2015]
methods are two widely used schemes. The former is performed
entirely on the Eulerian grid while the latter relies on auxiliary La-
grangian particles.

4 Coupled Solid–Fluid Simulation

4.1 The Continuous Formulation

In this work we focus on the coupled simulation of multiple in-
compressible, hyper-elastic, and elasto-plastic solids immersed in



an incompressible fluid. This requires us to solve the momentum
equation, given by

ρ
dv

dt
= ∇ · σ + f

∇ · v = 0

∀x ∈ Ω

fv = sv ∀x ∈ Γ

(6)

where Ω denotes a region in world space, x denotes a point in world
space, v is the velocity of a particle at x, σ is the Cauchy stress and
f are external forces such as gravity. For each x containing a solid,
we compute σ using a standard hyper-elastic or elasto-plastic con-
stitutive model, and for each x containing a fluid we set σ = 0. For
these cells, the divergence-free condition, ∇ · v = 0, is sufficient.
We also enforce a no slip condition along the solid-fluid boundary
Γ, where fluid and solid velocities are respectively denoted fv and
sv. We use the hyper-elastic model of McAdams et al. [2011] for
the elastic component of all of our examples.

Figure 2: The high-level structure of our data storage and compu-
tation scheme. To assist advection and contact handling, we keep
separate velocity fields for each solid object. For efficiency, only
values near the solid are updated.

4.2 Spatial Discretization and Constraints

Our method relies on fixed discretizations of both x̄ and x. In or-
der to solve Eqn. 6, we discretize Ω using regular, hexahedral fi-
nite elements. Velocity, displacement and forces are co-located at
the grid nodes, while pressure values is stored at grid centers. In
order to incorporate equality constraints we rely on a mixed formu-
lation in which incompressibility is applied as a point constraint at
the cell center. This can be considered an under-integrated finite
element, which is commonly used to prevent locking [Belytschko
et al. 2013]. We then compute per-element mass and stiffness matri-
ces, based on whether each cell contains a solid or a fluid, using an
eight-point quadrature rule, and then assemble into global M and K
operators. Our discretized divergence-free constraint is expressed
as Jv = 0 where J is the constant constraint gradient. Note that
due to the continuity of the velocity field, the no slip condition on
solid-fluid boundaries is implicitly enforced, and no special spatial
coupling terms need to be formulated.

To facilitate velocity advection and collision detection, each solid
stores a copy of the velocity field, but only values near the solid are
ever updated. Fig. 2 shows our high level data storage and compu-
tation structure. Our algorithm also requires a discretization of x̄ if
plastic deformation is desired. For each plastic solid, we create an
auxiliary grid of that solid’s reference coordinate system lx̄, where
l ∈ [1, Ns] indexes each solid in the simulation.

4.3 Time Integration

We use a splitting scheme to advance our system in time. First,
we use implicit integration to compute a divergence-free velocity
field for the solid cells, and then perform an advection that resolves
collisions. Algorithm 1 gives an overview of our time integration
scheme. In the next sections, we describe the key components of
our algorithm: a semi-implicit update for Eulerian Solids, pressure
projection, and a collision resolution scheme.

Algorithm 1 Eulerian solids and fluids simulation

1: Compute ∆t based on CFL condition
2: for each solid object, l do
3: Compute mass lM and volume fraction lV on the grid
4: Compute material force lf and stiffness matrix lK
5: . (§4.4)
6: end for
7: Compute fluid mass fM
8: Assemble M, K, C and f? . (§4.4)
9: v? = G−1f? . (Eqn. 8)

10: Compute pressure p . (Eqn. 12)
11: Pressure project v? to get pre-advection vn+1 . (Eqn. 13)
12: for each solid object, l do
13: Update solid particle velocities using FLIP from lvn+1

14: Add repulsions and frictions to particles in collision
15: . (§4.6)
16: end for
17: for each solid object, l do
18: Rasterize particle velocities to get final velocity lvn+1

19: Update displacement lu = lu
n

+ ∆tlvn+1

20: Semi-Lagrangian advect lu to get lun+1

21: end for
22: Semi-Lagrangian advect fluid velocity fvn+1

4.4 Semi-implicit Update

The original Eulerian Solids scheme [Levin et al. 2011] used ex-
plicit force integration to compute the velocity field, followed by a
first-order finite difference scheme for advection. Both of these de-
sign decisions resulted in small time steps. While Fan et al. [2013]
introduced Lagrangian modes on top of the Eulerian motion in or-
der to reduce this restriction, we seek to ease it in a way that main-
tains the convenience of a single spatial discretization. First, we
replace the explicit force integration with a semi-implicit scheme
that is similar to that of Stomakhin et al. [2013].

We denote the change in velocity at each grid node, due to internal
forces fint, over the time interval [t, t+ ∆t] as:

vn+1 = vn + ∆t fint
(
un+1) .

A standard Taylor expansion around x yields,

f(un+1) = fint(u
n + ∆tvn+1) ≈ fnint +

∂fnint
∂x

∆t vn+1, (7)

which we can further abbreviate to f(un+1) = fnint + K∆tvn+1.
By combining this with a first order discretization of acceleration,
a? = (vn+1 − vn)/∆t, and the equations of motion for a de-
formable solid, Ma? + Cv? + f?int = fext, we obtain the semi-
implicit update equation:

(M + ∆tC + ∆t2K)v? = Mvn + ∆t(fext − fnint) (8)

Here, C is a Rayleigh damping matrix. The external force term fext
includes body, buoyancy and vorticity forces. For fluid-only cells,



C and K disappear and only the diagonal mass matrix M remains.
Therefore, the system can be solved efficiently if the simulation
domain is dominated by a fluid.

Note that there is no advective term in the stiffness matrix. In a
purely Eulerian sense, the force arises from a chain of variables:
fint (F (u(x(t), t))). The derivative should then be:

∂fint (F (u(x(t), t)))

∂t
=
∂fint
∂F

∂F

∂u

(
∂u

∂x

∂x

∂t
+
∂u

∂t

)
. (9)

The ∂u
∂x

∂x
∂t

= v · ∇u appears to introduce an advective term, but
we can observe that

(
∂u
∂x

∂x
∂t

+ ∂u
∂t

)
= Du

Dt
, i.e. the total derivative

of u. This then reduces to the Lagrangian case,

∂fint (F (u(t)))

∂t
=
∂fint
∂F

∂F

∂u

Du

Dt
. (10)

Taking a perspective similar to Stomakhin et al. [2013] that the
nodes of the Eulerian mesh are fictitiously deforming in a La-
grangian manner, the Lagrangian K in Eqn. 8 suffices.

Our semi-implicit integration scheme can handle large time steps
under severe deformations. In Fig. 3 we initially squished a bunny
by half. We did not respect the CFL condition and set ∆t = 1

24
. Ex-

plicit integration blows up almost immediately, while semi-implicit
integration correctly returns the bunny to its rest shape.

(a) (b)

Figure 3: We scale the bunny by half and let it expand. Using
∆t = 1

24
, explicit integration blew up after 4 frames while our

semi-implicit scheme is extremely stable.

4.5 Incompressibility Constraints

We enforce incompressibility constraints using a primal-dual algo-
rithm. First, we form the Karush-Kuhn-Tucker (KKT) system pre-
scribed by our semi-implicit scheme (§4.4),[

G JT

J 0

] [
vn+1

p

]
=

[
f?

b

]
(11)

where G = M + ∆tC + ∆t2K, f? = Mvn + ∆t(fext − fnint)
and b contains the boundary conditions. We first solve Gv? = f?

for the unconstrained velocity v? and then solve the dual problem
to eliminate the divergent part of the velocity field. We replace
G−1 with M−1 in the pressure solve to avoid an expensive matrix
inversion:

JM−1JTp = Jv? − b. (12)

Finally, we correct v? to get the pre-advection velocity field vn+1:

vn+1 = v? −G−1(JTp). (13)

The substitution in Eqn. 12 is can be interpreted in two ways. First,
if all the cells contain fluid, the Schur complement in Eqn. 12 nat-
urally yields M−1. Thus, we can interpret this substitution as mo-
mentarily approximating the solid cells as fluid. Second, if the solid
cells are integrated explicitly, Eqn. 12 again yields M−1, as the
material forces still appear on the right hand side. So, we can inter-
pret the substitution as only integrating the volume terms implicitly,
while treating the solid strain energies explicitly.

We also attempted to solve the KKT system (Eqn. 11) directly, but
initial test showed that our primal-dual version ran over 3× faster
in 2D. The investigation of more sophisticated solution methods for
this problem is left as future work.

Complexity compared to explicit integration: In previous work,
[Levin et al. 2011; Fan et al. 2013], two quadratic problems of the
same form as Eqn. 11 were solved to determine the time step size.
In our formulation, we instead solve three linear systems (Eqs. 8, 12
and 13). In our experiments, we found that the increase in time step
size far outweighed the cost of this additional linear solve. Thus,
we are able to compute a large, implicit step at a cost that is propor-
tional to a small, explicit step.

4.6 Contact and Collision Response for Solids

As noted in previous work [Sifakis et al. 2008; McAdams et al.
2009], the presence of divergence-free constraints help to main-
tain a collision-free state. However, some collision handling is still
needed to avoid solids from “sticking” if the advection stage in-
troduces overlaps. In order to address this, we apply the repulsion
forces of Bridson et al. [2002] during our advection.

For this stage, it is necessary to employ an auxiliary Lagrangian
variable. While this seems slightly at odds with the goal of a
fully Eulerian simulation, our underlying geometric representation
remains Eulerian. Like the Eulerian grid projection stage of the
Lagrangian FLIP method [Zhu and Bridson 2005], or the semi-
Lagrangian particle traces of grid-based Stable Fluids [Stam 1999],
we leverage the advantages of the other coordinate system during
time integration without fully commiting to the representation.

Collision resolution begins by copying each solid velocity vn+1

from our spatial grid to the individual solid grids lvn+1, where l in-
dexes each solid in the scene. Next, we instantiate particles for each
solid, using 8-16 particles per cell. In order to avoid collisions we
check the distance between the initial particles of one solid against
all of the other solids. If it is closer than a distance h (typically the
grid resolution) the normal velocity of the particle is modified by
an impulse r, defined as:

r = −min

(
∆t k d,m

(
0.1d

∆t
− vN

))
. (14)

Here, d is the overlap distance, k is a spring stiffness,m is the mass
of the particle and vN is the relative velocity in the direction of the
contact normal. The change of the particle velocity in the normal
direction is then defined as ∆vN = r/m. Friction can also be
applied by modifying the relative tangential velocity:

vT = max

(
1− µ ∆vN

|vpre
T |

, 0

)
vpre
T , (15)

where vpre
T is the pre-friction relative tangential velocity. The val-

ues of k and µ we used are listed in Table 1.

Computing the contact normal: Each solid object has an em-
bedded surface mesh and a signed distance field φ defined in its
material domain. The mesh is advected passively in the same way
as Fan et al. [2013]. When checking for the collision of material



particle s of solid i against solid j, we interpolate the material po-
sition field j x̄ and lookup jφ. A repulsion is added if the overlap
d = h − jφ(j x̄(ips)) > 0. We find the nearest surface element
to j x̄(ips) and use its world space normal as the contact normal.
If a surface mesh is not available, the gradient of the background
volume grid can be used to compute the normal [Levin et al. 2011].

5 Implementation and Results
We solved Equation 8, 12 and 13 using Preconditioned Conjugate
Residuals (PCR) with a Jacobi preconditioner because the matrices
are semi-definite. Warm starting was used when solving the pres-
sure (Equation 12). We use the Eigen [Guennebaud et al. 2010]
library for linear algebra routines. All simulations were run on a
8-core, 3GHz MacPro with 32 GB of RAM using 16 threads. An
advantage of Eulerian simulation is that most stages can be em-
barrassingly parallelized, so OpenMP was used whenever possible.
Both our 2D and 3D examples used the co-rotational material from
McAdams et al. [2011]. Table 2 shows a performance summary of
our 3D examples and Table 1 shows their simulation parameters.
We chose a high contact spring stiffness for more bouncy contact
and lower value for dampened contact. We used a PCR threshold
of 0.02 for the pressure solve (Eqn. 12) in all the examples. For
the two velocity solves (Eqs. 8 and 13) we used a PCR threshold of
1e−4 for Cheb and 1e−3 for the others.

5.1 Simulating a Single Solid with a Fluid

In all of the following examples, we found that the linear solves,
particularly the pressure solve, consumed the largest fraction of the
running time (Table 2). The collision assistance provided by the
divergence-free constraint can also be seen in the timings, as very
little time needs to be spent in collision resolution.

Elasticity validation: Fig. 4(a) shows two jets compressing an
elastic circle. External forces, including fluid forces, are then re-
moved and the simulation of the circle continues in isolation. The
circle correctly returns to its reference configuration, which is a
hallmark of the Eulerian Solids approach (Fig. 4(b)).

Ball: We dropped a heavy elastic ball to a carpet of smoke. The
only external forces applied to the fluids are gravity and vorticity
confinement of Fedkiw et al. [2001]. The smoke gets pushed away
when the ball hits the flow. As the ball rebounds, a plume of smoke
is drawn up by the low-pressure eddy formed in its wake. The sim-
ulation is inside a box with Dirichlet boundary conditions, so four
vortices form along the four quadrants of the x-z plane (Fig. 5).

Buoyancy: Figure 6 illustrates that solids with different densities
behave differently when interacting with the fluid. The heavy bunny
falls at the rate of gravity and the light bunny falls much slower due
to drag forces. A buoyant jet is used to push the light bunny to the
ceiling while the heavy bunny remains on the ground.

Cheb’s Glaucoma Test: For plastic deformation, we use a mul-
tiplicative plasticity model [Bargteil et al. 2007]. The plastic de-
formation gradients are stored in a material space grid, initially set
to identity, and updated according to a yield condition. For more
details, please refer to §3.7 of Fan et al. [2013]. We take Cheb to an
eye exam where a high pressure puff of air is shot at his head. Fig-
ure 7(c) and 7(d) shows the comparison between elastic and plastic
deformation. In the supplemental video, we show that by varying
whether the feet are constrained, different motions are obtained.

5.2 Simulating Multiple Solids with a Fluid

Collision Response: In the supplement video we show two 2D
circles moving towards each other. By adding collision response

(a)

(b)

Figure 4: (a) A elastic circle deforms under the influence of two
jets. (b) We removed all external forces and simulated the circle by
itself. The circle is able to return to its rest shape.

Example Solid-fluid k spring µ friction
density ratios stiffness coefficient

Ball 1000:1 10000 0.5
Bunny (light) 1.3:1 2000 0.2

Bunny (heavy) 1000:1 2000 0.5
Cheb 1.3:1 2000 0.5
Party 1000:1, 500:1 10000 0.2

Table 1: Simulation parameters used for each example.

to the solid particles, the circles are able to separate after collision.
Without this response, the circles stick.

“Party”: We simulate multiple solids with various densities and
material parameters interacting with each other and the fluid (Figure
1). Figure 9 shows the time steps used throughout the simulation.
We use a CFL number of 0.6 when two solids are less than 2 grid
cells apart and 1.8 otherwise. Some small time steps occur after
second 6 in order to complete the current render frame, not due to
the CFL number. Smoke and side walls are not rendered so that the
solid and fluid motions can be seen more clearly. Figure 8 shows
the final shape of each solid. Note the extreme deformations such as
the plastic duck’s wing being compressed to be flush with its body.

Due to the presence of multiple objects, the timing breakdown dif-
fers from that of the other examples. More time is spent in ad-
vection and constructing G. This is because a K matrix must be
constructed for each solid, and each must also be converted to FLIP
particles and then re-rasterized to the grid. Our current implemen-
tation parallelizes these operations internally for each solid object;
it does not create a separate thread for each solid. Therefore, many
opportunities for further accelerating these operations still remain.



Figure 9: Simulation timestep sizes as the party progresses. The rendering rate is fixed at ∆t = 1
24

throughout. The horizontal black line
denote the average timestep during the simulation. Frames from events corresponding to significant changes in the timestep size are shown.
From left to right: the solids are given an initial impulse, they collide and form complex contacts, they fall to the floor, bounce on the floor,
and finally come to rest.

Example Grid Dimensions Avg. Min. Avg. Compute Velocity solves Pressure Advection Collision
timestep timestep time/frame G (line 8) (lines 9, 11) solve (line 10) (lines 13, 18) (line 14)

Ball 120 × 140 × 120 0.025 0.0016 6.54s 0.84s 0.12s 2.83s 1.12s 0.01s
Light Bunny 144 × 200 × 144 0.0369 0.0064 17.4s 1.32s 5.02s 6.21s 1.72s 0.016s
Heavy Bunny 144 × 200 × 144 0.0236 0.00058 16.9s 1.35s 2.47s 8.31s 1.68s 0.016s

Cheb 120 × 100 × 80 0.021 0.0023 6.97s 1.55s 1.10s 1.10s 1.37s 0.01s
Party 200 × 180 × 200 0.0133 0.00083 54.1s 13.6s 6.72s 12.1s 14.46s 0.25s

Table 2: For each example, the size of the spatial grid, average / minimum simulation time step sizes and average per-frame simulation times
are reported. We also list the computation times of key stages of Algorithm 1. All timings are reported in seconds.

Figure 5: A plume rises as an elastically deforming ball bounces
up from a smoky floor.

6 Discussion and Future Work
In this paper we have shown how to simulate a two-way coupling
between solids and a fluid where the underlying representation is
entirely Eulerian. This allows us to generate simulations that fea-
ture large deformations and frictional contact, all the while captur-
ing visually interesting fluid effects. We believe our method pro-
duces examples that are more complex than previous approaches
and avoids the complexities of Lagrangian, mesh-based simulation.

Despite the success of our method, it has several limitations, the

most obvious of which is that the fluid is limited to a single phase.
Extending this approach include high-quality, fully Eulerian liquid
simulations [Heo and Ko 2010] is an interesting direction for fu-
ture work. As the technique is Eulerian, handling features that are
smaller than a single grid cell, e.g. rods and thin shells [Guendel-
man et al. 2005], remains a challenge. This same difficulty extends
to representing detailed fracture patterns though extended finite el-
ement approaches [Kaufmann et al. 2009] offer a potential solution.

Furthermore, while we have shown that an implicit integration
scheme can be effective when simulating this coupling problem,
other schemes that enable even larger timesteps [Lentine et al.
2012], or preserve more structure given the same timestep [Mullen
et al. 2009], would be welcome additions to this work. Finally, it re-
mains to be seen whether a combination of Eulerian-on-Lagrangian
[Fan et al. 2013] and subspace methods [Kim and Delaney 2013;
Liu et al. 2015] could be used to accelerate the overall simulation.
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Figure 6: Different solid densities behave differently under buoyant
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plumes causes the bunny to rise like a balloon. When the ratio is
1000:1 (right), the bunny drops like a rock.
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