
Analytic Eigensystems for Isotropic Distortion Energies

BREANNAN SMITH, FERNANDO DE GOES, and THEODORE KIM, Pixar Animation Studios

Fig. 1. We present closed-form expressions for the eigensystems of isotropic distortion energies suited to geometry processing and physical simulation. We
use the analytic eigensystem of the Symmetric Dirichlet energy to optimize a 2D parameterization (left). Our analytic eigensystem for the ARAP energy was
used to simulate the over-inflated tires in this scene from Cars 3 (right). ©Disney/Pixar

Many strategies exist for optimizing non-linear distortion energies in geom-

etry and physics applications, but devising an approach that achieves the

convergence promised by Newton-type methods remains challenging. In

order to guarantee the positive semi-definiteness required by these methods,

a numerical eigendecomposition or approximate regularization is usually

needed. In this paper, we present analytic expressions for the eigensystems

at each quadrature point of a wide range of isotropic distortion energies.

These systems can then be used to project energy Hessians to positive semi-

definiteness analytically. Unlike previous attempts, our formulation provides

compact expressions that are valid both in 2D and 3D, and does not introduce

spurious degeneracies. At its core, our approach utilizes the invariants of the

stretch tensor that arises from the polar decomposition of the deformation

gradient. We provide closed-form expressions for the eigensystems for all

these invariants, and use them to systematically derive the eigensystems of

any isotropic energy. Our results are suitable for geometry optimization over

flat surfaces or volumes, and agnostic to both the choice of discretization and

basis function. To demonstrate the efficiency of our approach, we include

comparisons against existing methods on common graphics tasks such as

surface parameterization and volume deformation.

CCS Concepts: • Computing methodologies → Mesh geometry mod-
els;

Additional Key Words and Phrases: second-order methods, geometry opti-

mization, distortion energy.

ACM Reference Format:
Breannan Smith, Fernando de Goes, and Theodore Kim. 2018. Analytic

Eigensystems for Isotropic Distortion Energies. ACM Trans. Graph. 1, 1
(August 2018), 15 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Authors’ address: Breannan Smith; Fernando de Goes; Theodore Kim, Pixar Animation

Studios.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0730-0301/2018/8-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The minimization of distortion energies is at the core of many graph-

ics applications, such as surface parameterization and physically-

based deformation. Unfortunately, most energies are non-convex,

which make them challenging to optimize numerically. In particular,

the classic second-order Newton algorithm (see, e.g., [Nocedal and

Wright 2006]) tends to stall and even diverge in the presence of an

indefinite energy Hessian. To overcome this issue, many strategies

have been developed for modifying the Hessian matrix using a va-

riety of convex proxies. For instance, some techniques replace the

Hessian with a Laplacian-like preconditioning matrix at the cost of

degrading convergence to first-order [Claici et al. 2017; Kovalsky

et al. 2016]. Other methods alter the Hessian by removing negative

eigenvalues numerically [Stomakhin et al. 2012; Teran et al. 2005]

or via 2D composite majorization [Shtengel et al. 2017].

In this paper, we resolve Hessian indefiniteness by investigating

eigenstructures analytically. A similar approach was considered

previously by Chen and Weber [2017] for the restricted case of 2D

isotropic energies, but their formulation is based on complex analy-

sis and thus does not generalize to 3D. Conversely, some attempts

have sacrificed generality to derive fast Hessian projections for spe-

cific energies. In particular, McAdams et al. [2011] obtained analytic

eigenvalues for Co-rotational elasticity, while Smith et al. [2018]

addressed a custom Neo-Hookean energy. Our method automati-

cally produces these results as special cases, but goes further and

establishes a general method for revealing compact eigensystems

for a variety of isotropic distortion energies in both 2D and 3D.

Our key contribution is a list of analytic expressions that can

be used to efficiently project the Hessian of isotropic distortion

energies to positive semi-definiteness. These expressions can be

easily incorporated into a projected Newton solver, thus provid-

ing second-order convergence with existing distortion optimization

techniques. To achieve this, we depart from previous methods by

addressing isotropic energies using the invariants of the stretch

tensor that arises from the polar decomposition of the deformation

gradient. We present closed-form expressions for the eigenvalues

and eigenvectors of all these tensor invariants, and use these results

to arrive at a systematic scheme for constructing the eigenstructure

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 • B. Smith et al.

of the Hessians for any isotropic energy. Our approach leads to ana-

lytic expressions for 2/3 of the eigenpairs of any isotropic distortion

energy in 3D, and for 1/2 of the eigenpairs in 2D. We also show that

these closed-form eigenvectors are invariant to the distortion model

both in 2D and 3D. The remaining eigenvalues and eigenvectors

can often be found analytically or, in the worst case, by solving a

small d×d eigenproblem (d=2 or 3). We demonstrate the effective-

ness of our method by providing fully analytic expressions for the

eigensystems of many popular distortion energies, including ARAP,

Symmetric ARAP, Co-rotational, Symmetric Dirichlet, and MIPS.

2 RELATED WORK
Many graphics applications are based on the optimization of isotropic

distortion energies, so for brevity we will focus on previous methods

that have addressed the numerics of these optimizations.

2.1 First-Order Methods
The local-global algorithm is arguably the most popular optimiza-

tion technique in geometry processing. It consists of an expectation-

maximization scheme that alternates local and global steps. Alexa

et al. [2000], for instance, employed this method to minimize the

As-Rigid-As-Possible (ARAP) energy in 2D. The local step projects

each deformation gradient to a rotation, while the global step uses

a Laplacian to fuse the rotated elements using a linear solve. This

approach has been applied to many applications, such as surface

modeling [Sorkine and Alexa 2007], mesh parameterization [Liu

et al. 2008], and volume deformation [Jacobson et al. 2012].

Bouaziz et al. [2012] extended the local-global method to a broad

class of distortion energies using proximal operators. The Lapla-

cian in the global step was replaced by the Jacobian matrix of the

proximal operators, which resembles the Hessian approximation

of a Gauss-Newton method, while element-wise local steps were

retained. This technique was later employed in physical simula-

tion [Bouaziz et al. 2014] and improved using ADMM [Narain

et al. 2016], Chebyshev extrapolation [Wang 2015], and L-BFGS

updates [Liu et al. 2017].

Other distortion energies were addressed using block coordinate

descent methods [Fu et al. 2015; Horman and Greiner 1999] and

Gauss-Newton solvers [Eigensatz and Pauly 2009]. More recently,

Kovalsky et al. [2016] showed that the Laplacian matrix is a reliable

quadratic proxy for many distortion energies, while Claici et al.

[2017] advocated the discrete Killing operator as an isometry-aware

proxy. Alternatively, Rabinovich et al. [2017] proposed an iterative

reweighting scheme of the Laplacian based on gradient residuals.

Pighin and Lewis [2007] instead used an iterative reweighted least-

squares technique, while Bommes et al. [2009] adopted a greedy

progressive stiffening of the Laplacian.

All of these techniques are solely contingent on the gradient of

the distortion energy, and are therefore inherently first-order. In

contrast, our work investigates the use of second-order methods.

2.2 Second-Order Methods
Second-order methods are preferred in numerical optimization due

to their superior convergence. However, special care must be taken

in order to handle indefinite Hessians, otherwise the computations

can stall or diverge. For example, Chao et al. [2010] used a trust-

region solver for the optimization of ARAP and Co-rotational ener-

gies, which is essentially an adaptive regularization of the Hessian.

Shtengel et al. [2017] advocated a convex-concave decomposition

of the distortion energies combined with a convex majorizer solver.

However, finding an effective convex-concave decomposition is an

opaque process, and the approach of Shtengel et al. [2017] is limited

to 2D. We instead present a systematic, second-order approach for

distortion energies in both 2D and 3D.

An alternative is to use a projected Newton technique, which

projects the Hessian to a positive semi-definite matrix by clamping

its negative eigenvalues at every solver iteration. Since extracting

the eigenvalues and eigenvectors of the global Hessian is computa-

tionally prohibitive, several authors have projected the eigensystem

of a local Hessian evaluated at quadrature points (see, e.g., [Fu and

Liu 2016]). Consequently, the eigendecomposition of each element-

wise matrix becomes the computational bottleneck. Our results

accelerate this stage by presenting closed-form expressions for the

eigenvalues and eigenvectors.

By viewing the distortion energies in terms of the invariants of

the 3D Cauchy-Green strain tensor, the work of Teran et al. [2005]

was able to probe the indefiniteness of the Hessian using one 3×3

and three 2×2 eigenproblems. While this approach reduces the

problem size, it does not yield the closed-form expressions for the

underlying eigenvalues and eigenvectors, so the construction of

the projected Hessian is performed numerically. The use of tensor

invariants with respect to the Cauchy-Green strain tensor is also

limiting, because it is insufficient to express stretch-based energies

such as ARAP or the Co-rotational model. This limitation was ad-

dressed in Stomakhin et al. [2012] by replacing the Cauchy-Green

invariants with the singular values of the deformation gradient, but

the inefficient numerical eigensolves for Hessian blocks remain. Xu

et al. [2015] improved these computations further by restricting

the analysis to energies that satisfy the Valanis-Landel hypothesis.

Unfortunately, many geometric energies, such as MIPS, Symmetric

Dirchlet, and Symmetric ARAP do not fall into this category. Our

results instead lead to faster, more compact, and more general code.

The work of McAdams et al. [2011] presented an analytic solution

for the indefiniteness of the Co-rotational energy. To do so, they

decomposed the 4th order tensor defined by the energy Hessian into

symmetric and skew-symmetric parts. This yields the eigenstructure

of the Co-rotational model, albeit embedded inside 4th order tensors.

We propose amore general derivation that produces their eigenvalue

expressions as a special case, and additionally reveals the structure

of the underlying eigenvectors.

Chen and Weber [2017] considered analytic eigensystems for

2D isotropic energies. However, their derivation relies heavily on

complex derivatives and thus does not extend to 3D. Their generic

expressions also contain degeneracies that invalidate the eigenanal-

ysis for a variety of energies and deformation configurations. For

example, at uniform scaling configurations such as the rest state,

their formulas return a null vector as an eigenvector (see §1.3 in

the supplemental material). In sharp contrast, our formulation is

well-defined for any deformation gradient configuration and for

any isotropic energy.

Analytic Eigensystems for Isotropic Distortion Energies • :3

More recently, Smith et al. [2018] took an energy-specific ap-

proach and resolved the indefiniteness of a custom Neo-Hookean

model. In doing so, they derived the analytic eigensystems for the

Frobenius squared norm and the determinant of the deformation

gradient in 3D. However, their approach lacks generality as they did

not derive the eigensystem of a third invariant (I1 in §4.1) that is not

present in the Neo-Hookean model. This additional term appears in

almost all geometric distortion energies, and precludes the use of

their results in this context. In contrast, our formulation handles this

term in closed-form. By addressing this invariant, we also provide

the eigenstructure for the rotation gradient, a term that has been

known to introduce numerical difficulties in the past [Twigg and

Kačić-Alesić 2010], and is often computed by performing a set of

matrix inverses [Barbič and Zhao 2011]. Our analysis reveals that

there is in fact a simple, direct expression for this term that bypasses

these difficulties. With the complete set of eigenstructures for all the

tensor invariants in hand, we are then able to construct closed-form

eigensystems for isotropic energies in 2D and 3D.

3 DEFINITIONS
We begin by establishing several basic definitions and concepts.

Scalars will be denoted with unbolded lowercase (a), vectors as
bolded lowercase (a), matrices (a.k.a 2nd order tensors) as bolded

uppercase (A), and 4th order tensors using blackboard bold (A).

Tensor Notation: We will be analyzing many 2nd and 4th order

tensors, so we adopt a notation similar to Golub and Van Loan

[2012] that flattens 2nd and 4th order tensors to vectors and matri-

ces respectively. Concretely, given a 2 ×2 matrix A, we define the
vectorization operator “vec” as the column-wise flattening:

A =

[
a c
b d

]
⇔ vec(A) =

a
b
c
d

= a. (1)

We can arrange a 4th order tensor as a matrix of matrices:

A =

[
a c
b d

] [
i k
j l

]
[
e д
f h

] [
m o
n p

]

=

[
[A11] [A12]

[A21] [A22]

]
, (2)

and define its vectorization operator “vec” as a double unfolding

that yields the matrix:

vec(A) =

 vec(A11) vec(A21) vec(A12) vec(A22)

=

a e i m
b f j n
c д k o
d h l p

= A.

(3)

This flattening convention has several properties that we leverage

in our derivations. The double contraction of two 2nd order tensors

becomes a dot product, i.e. A : B= tr
(
A⊤B

)
=a⊤b, and the eigenvec-

tor of a flattened matrix B a=λ a is equivalent to the “eigenmatrix”

of the corresponding higher-order tensor, i.e., B : A=λA.

Discretization: We consider the distortion optimization of a d-
dimensional meshM, whered=2 or 3. We use x to denote the vertex
positions ofM in the rest pose, and x to indicate the new positions

computed by the optimization. These positions can be interpolated

using any choice of basis functions associated with quadrature

points {q} distributed over M. For instance, the typical case of

simplicial meshes sets the quadrature point to the center of simplices

(i.e., triangles in 2D and tetrahedra in 3D) with piecewise linear bases.

The number of degrees of freedom in a mesh is denoted n and it is

equal to the dimension d of the mesh embedding multiplied by the

the number of vertices inM.

Deformation Gradient: The distortion ofM from a rest configura-

tion x to a posed configuration x can be quantified by computing the

deformation gradient F at each quadrature point q. The deformation

gradient at q indicates the linear term of the affine transformation

that maps xq =Fqxq+y, where y is a translation vector. Note that

Fq depends on the basis functions used to interpolate x and x at the

quadrature point q. We denote the SVD of the deformation gradient

as F=UΣV⊤, where U,V∈SO(d) and Σ is a diagonal matrix con-

taining the principal stretches {σ1, . . . ,σd }. The principal stretches
may have negative values in order to accomodate reflections (see,

e.g. [Irving et al. 2004; Twigg and Kačić-Alesić 2010]). This SVD can

be used to define the polar decomposition F=RS, where R=UV⊤ is

a rotation and S=VΣV⊤ is a (symmetric) stretch tensor.

Distortion Energy: The distortion quantified by the deformation

gradient at each quadrature point can be aggregated into a scalar

distortion energy of the form:

Ψ(x) =
∑

q
Ψq (Fq)|q |, (4)

where Ψ(x) is the energy over the entire mesh, Ψq is the energy

at a quadrature point, and |q | is a volume weight associated with

quadrature point q at rest. We can further apply the chain rule to

express the first and second derivatives of Ψ in terms of f =vec(F):

∂Ψ

∂x
=
∑
q
|q |
∂fq
∂x

⊤ ∂Ψq

∂fq
,

∂2Ψ

∂x2
=
∑
q
|q |
∂fq
∂x

⊤
(
∂2Ψq

∂f2q

)
∂fq
∂x
.

(5a)

(5b)

Here, ∂fq/∂x is a d2×n matrix, ∂Ψq/∂fq is a vector of size d2, and
∂2Ψq/∂f2q is a d2×d2 matrix, where n is the number of degrees

of freedom inM and d is the embedding dimension. While this

change of variables is not a similarity transform and can modify the

spectrum, the positive-semi definiteness of ∂2Ψq/∂f2q guarantees

the positive-semi definiteness of the resulting product in Eq. (5b).

Therefore, we can construct a numerical solver that is agnostic to

the discretization by analyzing the derivatives with respect to F (see,
e.g., [Sifakis and Barbic 2012]). We will henceforth refer to direct

modifications of ∂2Ψ/∂x2 as x-based, and direct modifications of

∂2Ψq/∂f2q as F-based.

:4 • B. Smith et al.

Fig. 2. A volumetric mesh with 23,237 tetrahedra is deformed into the peacock pose, the halfmoon pose, and the lord of the dance pose in an interactive
modeling session. All poses are computed using our projected Newton solver with the Symmetric Dirichlet energy.

Our tensor notation is preferable to conventional mode-k flatten-

ings [Kolda and Bader 2009] because it reorders the 4th order Hes-

sian ∂2Ψq/∂F2q into a symmetric matrix ∂2Ψq/∂f2q that admits an

eigendecomposition. Our convention also differs from that of Teran

et al. [2005] and Stomakhin et al. [2012], which instead cluster the

diagonals of the block matrices.

4 OUR APPROACH
We now present our core contribution. First, we demonstrate that

the use of scalar invariants based on S, the stretch tensor of F, is
the correct perspective for the analysis. Then, we show that the

eigensystem of each invariant can be stated in closed-form. Finally,

we use the eigensystems of the invariants to arrive at a procedure for

deriving the analytic eigensystems of isotropic distortion energies

in both 2D and 3D. Since our analysis is performed per quadrature

point, we drop the subscript q for conciseness.

4.1 S-centric Invariants
The majority of distortion energies Ψ used in geometry optimization

are isotropic and can be expressed in terms of rotation-invariant

scalars derived from F. These invariants can represent the principal

stretches {σi } directly or combinations thereof. In this work, we

seek invariants that facilitate the eigenanalysis of energy Hessians.

We advocate the use of invariants derived from the stretch tensor

S that arises from the polar decomposition F=RS:

I1 = tr(S) =
∑
iσi ,

I2 = ∥S∥2 =
∑
iσ

2

i ,

I3 = det(S) =
∏

iσi .

(6a)

(6b)

(6c)

The first invariant I1 sums one-dimensional stretches, and allows

the linear terms from distortion energies such as ARAP and Co-

rotational elasticity to be represented. The second invariant I2 is the
Frobenius squared norm of the deformation gradient (i.e. ∥S∥2= ∥F∥2)
and is used to measure the least-squares distortion. The third invari-

ant I3 encodes the volume change associated with F.
Other choices of invariants have previously been investigated.

Physics-drivenmethods [Irving et al. 2004; Teran et al. 2005], andme-

chanics approaches in general [Bonet and Wood 2008; Marsden and

Hughes 1994], traditionally use the invariants of the Cauchy-Green

strain tensor C=F⊤F to obtain the alternate invariants IC= tr(C),
I IC= ∥C∥2, and I I IC=det(C). However, Stomakhin et al. [2012] and

Xu et al. [2015] observed that these invariants are insufficient to

express the linear distortion terms that appear in many popular

models, such as the Co-rotational energy. Instead, these methods

expanded distortion energies in terms of principal stretches, at the

cost of verbose expressions and slower computations. Alternatively,

Smith et al. [2018] used the 3D versions of the I2 and I3 we describe
here, but their analysis is incomplete because it misses the existence

of I1 entirely. Shtengel et al. [2017] and Chen and Weber [2017]

proposed to use the similarity and anti-similarity parts of F, but this
decomposition is valid only in 2D.

By using the S invariants, we are able to perform a complete

eigenanalysis that has none of the shortcomings of these previous

approaches. This substitution can be employed without loss of gen-

erality, because we show in Appendix A that the 3D Cauchy-Green

invariants can be written in terms of our invariants. The character-

istic polynomial of F can also be expressed with our invariants via:

[2D] σ 2

i − I1σi + I3 = 0,

[3D] σ 3

i − I1σ
2

i +
1

2

(
I2
1
− I2

)
σi − I3 = 0.

(7a)

(7b)

Note that one invariant is redundant in 2D since I2= I
2

1
−2I3, but we

still use all three to maintain consistency between 2D and 3D.

To better understand the relationship between invariants and Hes-

sians, we expand the quadrature-point-wise derivatives in Eqn. (5)

in terms of {I1, I2, I3}. The gradient of Ψwith respect to the flattened

deformation gradient f =vec(F) yields

∂Ψ

∂f
=

∑
i

∂Ψ

∂Ii

∂Ii
∂f
. (8)

Analytic Eigensystems for Isotropic Distortion Energies • :5

Fig. 3. Surface parameterizations computed with our algorithm applied to the Symmetric Dirichlet energy. The parameterizations are visualized in the plane
(top row), and with a texture map on the 3D meshes (bottom row). From left to right, the meshes have 80k, 47k, 296k, 190k, 27k, and 1M triangles. Leftmost
image ©Disney/Pixar.

The energy Hessian in terms of f is then:

∂2Ψ

∂f2
=

∑
i

∂Ψ

∂Ii

︷︸︸︷
∂2Ii
∂f2

+
∑

i

∂2Ψ

∂I2i

(
∂Ii
∂f

) (
∂Ii
∂f

)⊤
︸ ︷︷ ︸

+
∑

i<j

∂2Ψ

∂Ii∂Ij

[(
∂Ii
∂f

) (
∂Ij

∂f

)⊤
+

(
∂Ij

∂f

) (
∂Ii
∂f

)⊤]
︸ ︷︷ ︸.

(9)

Note that all the 2nd order tensors (highlighted in red overbrace

and blue underbrace) are composed of first and second derivatives

of the invariants, so {I1, I2, I3} can be used as proxies for analyzing

the eigenstructure of the Hessian. We perform this analysis next.

4.2 Eigensystems of Invariants
The eigenvalues and eigenvectors of our S-based invariants can be

stated in closed-form. In deriving these expressions, we will make

heavy use of the tensor notation defined in §3. We note that two of

the following eigensystems, the ones for I2 and the 3D version of I3,
were also shown in Smith et al. [2018].

Eigensystem of I1: The gradient of I1 with respect to F is the

rotation R from the polar decomposition of F:

∂I1
∂f
= vec

(
∂I1
∂F

)
= vec (R) = r. (10)

The Hessian of I1 is then the gradient of R. So-called “rotation

gradients” appear in many contexts, such as articulated dynamics

[Twigg and Kačić-Alesić 2010] and computer vision [Papadopoulo

and Lourakis 2000], and are usually computed by numerically dif-

ferentiating the SVD. This operation tends to be fairly opaque, as

it requires a matrix inverse [Barbič and Zhao 2011] that does not

reveal any underlying structure. However, we have found that rota-

tion gradients have simple closed-form expressions in 2D and 3D. We

first consider the 2D case and introduce the F-based twist matrix:

T =
1

√
2

U

[
0 −1

1 0

]
VT . (11)

The Hessian of I1 in 2D can then be written in closed-form as:

∂2I1
∂f2
=
∂r
∂f
=

2

σ1+σ2
tt⊤, (12)

where t=vec (T) is a unit norm vector. Thus, the Hessian ∂2I1/∂f2

is a rank-one matrix with eigenvector t and eigenvalue inversely

proportional to the average principal stretch. The 3D case involves

three F-based twists {T1,T2,T3}, one for each axis. For example,

the x-axis twist is:

T1 =
1

√
2

U

0 0 0

0 0 −1

0 1 0

 V
T . (13)

The 3D Hessian of I1 is then:

∂2I1
∂f2
=

2

σ2+σ3
t1t⊤1 +

2

σ3+σ1
t2t⊤2 +

2

σ1+σ2
t3t⊤3 , (14)

which is a rank-three matrix with eigenvectors ti and eigenvalues

inversely proportional to the average orthogonal principal stretches.

Eigensystem of I2: We compute the derivatives of I2 by noting

that I2= ∥S∥2= ∥F∥2= ∥f ∥2, which yields

∂I2
∂f
= 2f and

∂2I2
∂f2
= 2I. (15)

Here, I is ad2×d2 identity matrix (d=2 or 3). The Hessian of I2 is full-
rank with a repeated eigenvalue equal to two, and the eigenvectors

:6 • B. Smith et al.

can be set to any orthonormal bases. This invariant thus serves as a

regularizer for distortion energies expressed in terms of F.

Eigensystem of I3: The third invariant is more challenging since it

is quadratic (cubic) in 2D (3D) with respect to F. The 2D gradient is:

∂I3
∂f
= g = vec (G) with G = U

[
σ2 0

0 σ1

]
V⊤. (16)

For the Hessian, we again need the F-based twist matrix T, but
additionally introduce the following flip (L) and pinch (P) matrices:

L =
1

√
2

U

[
0 1

1 0

]
V⊤ and P =

1

√
2

U

[
1 0

0 −1

]
V⊤. (17)

By denoting l=vec (L) and p=vec (P), we can verify that {r̂, p, l, t}
form an orthonormal bases, where r̂ denotes the normalized rotation

vector, i.e., r̂=r/
√
2. The eigensystem of I3 in 2D is then:

∂2I3
∂2f
= r̂r̂⊤ + tt⊤ − pp⊤ − ll⊤. (18)

The eigenvalues are respectively 1 for the r̂ and t eigenvectors, and
−1 for p and l. The rank-two subspaces spanned by {r̂, t} and {p, l}
are thus arbitrary, but we have found this particular decomposition

to be geometrically intuitive. Similar to 2D, the 3D gradient is:

∂I3
∂f
= g = vec (G) with G = U

σ2σ3 0 0

0 σ3σ1 0

0 0 σ1σ2

 V
⊤. (19)

Similar to Eq. (13), the 3D versions of the flip matrices {L1, L2, L3}
now appear along each axis. For example, the x-axis flip is:

L1 =
1

√
2

U

0 0 0

0 0 1

0 1 0

 V
T . (20)

The arbitrary subspaces from the 2D case disappear, so no 3D ver-

sions of R or P are needed. Each twist ti is an eigenvector with

corresponding eigenvalue σi , and li is an eigenvector paired with

−σi . The remaining eigenpairs are the solutions of the depressed

cubic derived by Smith et al. [2018], which we list in the supplement.

4.3 Eigensystems of Arbitrary Isotropic Energies
We now have all the components necessary to revisit Eqn. (9). To

begin, we prove in Appendix B that the twist t and flip l vectors are
orthogonal to the gradient of any invariant in 2D and in 3D:(

∂Ii
∂f

)⊤
t =

(
∂Ii
∂f

)⊤
l = 0. (21)

Consequently, they have zero projection onto the blue (underbraced)

matrices in Eqn. (9). The remaining red (overbraced) terms are all

Hessians of invariants (∂2Ii/∂f2), and we can establish via multipli-

cation that t and l are eigenvectors of any 2D isotropic energy. The

eigenvalues λ then take the analytic form:

∂2Ψ

∂f2
t=

[
2

σ1+σ2

∂Ψ

∂I1
+2
∂Ψ

∂I2
+
∂Ψ

∂I3

]
t=λ

twist
t,

∂2Ψ

∂f2
l=

[
2

∂Ψ

∂I2
−
∂Ψ

∂I3

]
l=λ

flip
l.

(22a)

(22b)

Similarly, we can show that {ti } and {li } are eigenvectors of any
3D isotropic energy, and have the analytic eigenvalues:

∂2Ψ

∂f2
t1=

[
2

σ2+σ3

∂Ψ

∂I1
+2
∂Ψ

∂I2
+σ1
∂Ψ

∂I3

]
t1=λx-twist

t1,

∂2Ψ

∂f2
l1=

[
2

∂Ψ

∂I2
−σ1
∂Ψ

∂I3

]
l1=λx-flip

l1.

(23a)

(23b)

We have now unveiled the expressions for two (six) eigenpairs in

2D (3D). These expressions can be used to obtain the respective

analytic eigenpairs for any isotropic energy. The remaining two

(three) eigenpairs in 2D (3D) depend on the blue outer product terms

in Eqn. (9). In the most general case, these terms result in a quadratic

(cubic) system in 2D (3D), that is encoded in a 2×2 (3×3) matrix A.
We can construct this matrix A by probing ∂2Ψ/∂f2 with scaling

modes, e.g., the x-scaling vector in 2D is

D1 = U

[
1 0

0 0

]
V⊤. (24)

The entries of A are obtained by computing the coefficients:

ai j =d⊤i

(
∂2Ψ

∂f2

)
dj , (25)

where di =vec(Di) is a unit vector orthogonal to the twist and flip

vectors. The explicit expressions of ai j are listed in Appendix D. We

have found that, for the most popular distortion energies in graphics

applications, the off-diagonal entries ai j resolve to zero, and the

scaling vectors are in fact the eigenvectors. In these cases, we can

write simplified closed-form expressions for the last d eigenpairs.

In 2D, the scaling vector d1 has the eigenvalue

∂2Ψ

∂f2
d1 =

[
2

∂Ψ

∂I2
+
∂2Ψ

∂I2
1

+4σ 2

1

∂2Ψ

∂I2
2

+σ 2

2

∂2Ψ

∂I2
3

+4σ1
∂2Ψ

∂I1∂I2
+4I3

∂2Ψ

∂I2∂I3
+2σ2

∂2Ψ

∂I3∂I1

]
d1=λx-scale

d1,

(26)

and the eigenvalue for d2 reverses the positions of σ1 and σ2 in the

above equation. In 3D, the eigenvalue for d1 becomes:

∂2Ψ

∂f2
d1 =

[
2

∂Ψ

∂I2
+
∂2Ψ

∂I2
1

+4σ 2

1

∂2Ψ

∂I2
2

+σ 2

2
σ 2

3

∂2Ψ

∂I2
3

+4σ1
∂2Ψ

∂I1∂I2
+4I3

∂2Ψ

∂I2∂I3
+2σ2σ3

∂2Ψ

∂I3∂I1

]
d1=λx-scale

d1.

(27)

The eigenvalues for d2 and d3 respectively follow from σ2 and σ3,
and are listed explicitly in Appendix E.

We now have a method for deriving analytic expressions for the

complete eigensystem of any arbitrary isotropic energy. In all cases,

simple expressions for d2−d eigenpairs can be computed directly

with Eqns. (22) and (23). As we will show in the next section, the

off-diagonal entries in Eqn. (25) are often zero, and yield compact ex-

pressions for the last d eigenpairs. Finally, even in the cases where a

non-diagonal matrixA is present, we will show in §5.3 that relatively

simple expressions appear.

Analytic Eigensystems for Isotropic Distortion Energies • :7

Fig. 4. A tetrahedral mesh of Spot the Cow is contorted with our method
by minimizing the energies ARAP (left), Symmetric Dirichlet (center), and
Symmetric ARAP (right), timing 2.46s, 21.60s, and 23.19s, respectively.

5 ENERGY EIGENSYSTEMS
To demonstrate the power of the expressions from the previous

section, we use them to derive the analytic eigensystems for sev-

eral popular distortion energies: ARAP, Symmetric Dirichlet, and

MIPS. In Appendix F, we illustrate the generality of our approach

by applying it to several other energies that are additive exten-

sions of those in this section. We also provide Matlab scripts in the

supplemental materials that symbolically validate these analytic

eigensystems in both 2D and 3D. We denote eigenvalues with λi
and the corresponding eigenvectors with ei =vec(Ei).

5.1 ARAP Energy
The ARAP energy is commonly stated as ΨARAP = ∥F−R∥2 (see,

e.g., [Chao et al. 2010]), and can be written in terms of the S invari-
ants as: ΨARAP= ∥F∥2−2 tr (S)+∥R∥2= I2−2I1+d2. Applying Eq. (22)
to this expression yields the first two eigenpairs in 2D:

λ2D

1
= 2 − 4/(σ1 + σ2) e1 = t,

λ2D

2
= 2 e2 = l. (28)

Next, applying Appendix D reveals that the scaling modes decouple,

because all the ai j off-diagonals resolve to zero. Therefore, applying
Eq. (26) yields the other two eigenpairs:

λ2D

3,4 = 2 e3,4 = d1, d2. (29)

An equivalent process yields the 3D eigenpairs:

λ3D

1
= 2 − 4/(σ2 + σ3) e1 = t1,

λ3D

2
= 2 − 4/(σ3 + σ1) e2 = t2,

λ3D

3
= 2 − 4/(σ1 + σ2) e3 = t3,

λ3D

4...9 = 2 e4...9 = {li }, {di }.

(30)

Both 2D and 3D have repeated eigenvalues, respectively λ2...4 and
λ4...9. While we listed explicit eigenvectors for concreteness, the

bases for this subspace are in fact arbitrary. These expressions trans-

late into straightforward code inside a projected Newton solver.

The arbitrary subspace can be constructed using a diagonal matrix,

and since the twist-based eigenvalues are the only ones that admit

negative values, semi-positive-definiteness can be easily guaranteed.

A 2D implementation is short enough to be listed in Appendix C.

The Co-rotational model [McAdams et al. 2011] builds on the

ARAP model by adding a linearized volume penalty term. We show

in Appendix F.1 that its eigensystem is correspondingly similar. As

with ARAP, the arbitrary subspace does not need to be explicitly

constructed.

5.2 Symmetric Dirichlet
We first point out that the Dirichlet energy ΨD = 1/2∥F∥2 is in fact

equivalent to half of our I2, so its eigensystem is I (see Eqn. (15)). It is
also well-known that this energy’s full Hessian ∂2Ψ/∂x2 produces
a Laplacian [Botsch et al. 2010]. Therefore, we can conclude that

an identity regularizer for the F-based Hessian is equivalent to a

Laplacian regularizer for the final x-based Hessian.

We next examine the Symmetric Dirichlet energy [Smith and

Schaefer 2015], which is defined as ΨSD= (∥F∥2+∥F−1∥2)/2, and
show that F inverses do not introduce any new difficulties. In 2D, this

energy can be written using our S invariants as Ψ2D

SD
= (I2 + I2/I

2

3
)/2.

Similar to the ARAP case, the scaling modes decouple, so the 2D

eigenpairs can be stated as:

λ2D

1
= 1 + 3/σ 4

1
e1 = d1

λ2D

2
= 1 + 3/σ 4

2
e2 = d2

λ2D

3
= 1 + 1/I2

3
+ I2/I

3

3
e3 = l

λ2D

4
= 1 + 1/I2

3
− I2/I

3

3
e4 = t.

(31a)

(31b)

(31c)

(31d)

In 3D, the inverse term is more intricate and the energy can be

written using the S invariants as:

Ψ3D

SD
=

1

2

I2 +
1

8

(
I2
1
− I2

I3

)
2

−
I1
I3
. (32)

The three scaling eigenpairs are

λ3D

i = 1 + 3/σ 4

i ei = di , (33)

while the three twist eigenpairs are

λ3D

i+3 = 1 + σ 2

i /I
2

3
− (I2 − σ

2

i)σ
3

i /I
3

3
ei+3 = ti . (34)

Finally, the flip eigenpairs are

λ3D

i+6 = 1 + σ 2

i /I
2

3
+ (I2 − σ

2

i)σ
3

i /I
3

3
ei+6 = li . (35)

Our eigenanalysis reveals a singularity in Symmetric Dirichlet under

degenerate configurations, and will generally reveal fundamental

singularities in any distortion energy that it is applied to. Conversely,

if a distortion energy is singularity-free, our analysis will produce

singularity-free eigenvalue expressions. See Appendix F.3 for an

example. Consistent with previous works, our Symmetric Dirichlet

tests have found that this singularity requires no special treatment.

The Symmetric ARAP energy [Shtengel et al. 2017] adds several

new terms to the Symmetric Dirichlet energy, particularly involving

I1. We show in Appendix F.2 that the resulting eigensystem is similar

to Symmetric Dirichlet.

5.3 MIPS energy
The Most Isometric Parameterization (MIPS) energy [Horman and

Greiner 1999] is defined in 2D as ΨMIPS= I2/I3. We examine it here

as a case where the scaling modes remain coupled. The twist and

flip eigenpairs are respectively:

λ2D

1
= 2/I3 − I2/I

2

3
e1 = t,

λ2D

2
= 2/I3 + I2/I

2

3
e2 = l.

(36a)

(36b)

:8 • B. Smith et al.

Input 0 t = 1/3 t = 1/2 t = 2/3 Input 1

Fig. 5. Our closed-form eigensystems can be combined with a projected Newton solver to robustly interpolate from a relaxed hand (left) to a clenching hand
(right). The hand model is discretized with a tetrahedral mesh composed of 23,692 elements, as displayed by the cutaways. In this example, we minimized the
3D Symmetric ARAP energy, which took 0.21 seconds per frame. ©Disney/Pixar

The coupled scaling modes are:

λ2D

3
= I2(I2 − α) − 2I

2

3
e3 =

1

γ

(
βd1 + d2

)
,

λ2D

4
= I2(I2 + α) − 2I

2

3
e4 =

1

γ

(
d1 − βd2

)
,

(37a)

(37b)

where α =
√
I2
2
−3I2

3
and β = I2/(σ

2

2
− σ 2

1
+ α). The γ =

√
1+β2 term

normalizes the eigenvector.

The MIPS eigensystem indicates that, even when the 2D scal-

ing modes are coupled (i.e., a12,0), it is still possible to solve the

underlying quadratic analytically and obtain closed-form expres-

sions for the remaining eigenpairs. More concretely, given the 2D

matrix A with non-zero off-diagonals, the eigenvalues λ2D

3
and λ2D

4

correspond to the roots of the characteristic polynomial of A and

can be computed using the quadratic formula, while the eigenvec-

tors e3 and e4 follow Eqn. (37) with β = (λ2D

3
−a22)/a12. The 3D case

involves a cubic that can yield larger expressions, which can be

seen, for instance, in the equations found by Smith et al. [2018]. Al-

though an analytical expression is available for the 3D eigenvalues

(using, e.g., Cardano’s formula), solving a 3×3 eigendecomposition

can sometimes be the most expedient way of computing the last

three eigenpairs. Finally, we point out that, given an eigenvector

z= [z1 z2 z3]⊤of the matrix A, the corresponding eigenvector for

the energy Hessian is e=
∑
i zidi .

5.4 Discussion
We conclude this section by discussing the relationship of our results

to previous work. Additional analyses of these relationships are

available in the supplemental material.

Comparison to Accelerated Quadratic Proxy (AQP). Kovalsky et al.

[2016] presented an AQPmethod that yielded convergence speedups

by replacing the energy Hessian with a Laplacian matrix. Relatedly,

we showed in §5.2 that the second derivative of I2 introduces an
identity matrix at each quadrature point that contributes a Laplacian

to the global Hessian matrix. Therefore, the method of Kovalsky

et al. [2016] can be viewed as a looser approximation of the en-

ergy Hessian that assigns the F-based Hessian to identity at each

quadrature point. In the case of the ARAP energy, for instance, this

corresponds to the removal of part of the contribution of the twist

eigenvectors from §5.1.

Comparison to Composite Majorization (CM). The CM method

of Shtengel et al. [2017] considered Hessian projection to positive

semi-definiteness computed per (simplicial) mesh element. How-

ever, the extension of their composite majorization to 3D appears

to be difficult because it relies on the convex-concave decompo-

sition of expressions for the singular values of the deformation

gradient F. Such expressions exist in 2D and can be obtained using

the norm of the similarity and anti-similarity parts of F, but this no
longer holds in 3D because the problem becomes cubic. Moreover,

the majorizer approximation in Shtengel et al. [2017] (Eqn. (9) in

that paper) projects each term in the Hessian separately and then

sums the result. Consequently, it can introduce approximations even

when the Hessian was already positive-definite. By exploiting the

eigenstructure of the S invariants, our method takes a more holis-

tic view and projects the Hessian after all of its terms have been

gathered. If a quadrature point is already positive semi-definite, our

approach keeps its Hessian untouched. An extensive case study of

our approach compared to CM for the specific case of the ARAP

energy is presented in the supplement.

Comparison to Chen and Weber [2017]. Closely related to our

work, Chen and Weber [2017] considered analytic eigensystems

for isotropic distortion energies. However, their results are limited

to 2D because their analysis is dependent on complex derivatives.

Moreover, their closed-form expressions exhibit a series of invalid

states that need to be resolved on a case-by-case basis. In our sup-

plement, we revisit the derivation of Chen and Weber [2017] and

Analytic Eigensystems for Isotropic Distortion Energies • :9

detail the causes of their degenerated configurations. In contrast,

our method is suited to any isotropic energy both in 2D and 3D.

Comparison to Stomakhin et al. [2012]; Teran et al. [2005]. The
work of Teran et al. [2005] used the C-centric invariants (see Ap-
pendix A) to show that the indefiniteness of 3D Hessians can be

probed using three 2×2 eigenproblems and one 3×3 eigenproblem.

Stomakhin et al. [2012] extended these results by replacing the C
invariants with the 3D principal stretches. However, none of these

analyses reveal the closed-form eigensystem expressions we found

here. In particular, these previous techniques assembled the Hes-

sian eigenvectors numerically via a series of tensor contractions.

As we will show in §6, our analytic expressions offer simpler code,

leading up to a 3.69× speedup in Hessian construction compared to

Stomakhin et al. [2012].

Comparison to Smith et al. [2018]. The work of Smith et al. [2018]

established the eigensystems of the IC invariant and J =det F, which
correspond to our I2 and I3 respectively. However, they failed to find
the eigensystem for the I IC invariant (see their §7), which prevented

them from fully characterizing all Cauchy-Green-based energies.

Most significantly, their formulation missed the existence of the I1
invariant entirely, making it impossible to discover almost all of

the closed-form eigensystems that we presented in §5. With the

exception of the MIPS energy, all of the energies we address in this

paper contain the I1 invariant, which puts these energies beyond

the reach of the analysis in Smith et al. [2018]. Conversely, our

analysis yields the analytic eigensystems for both I1 and I IC. As
shown in Appendix A, the I IC invariant can be written in terms of

our S invariants, thus establishing its eigensystem as just a specific

application of our derivation. We are thus able to explicitly list the

closed-form eigensystem of I IC in §3 of the supplemental materials.

6 RESULTS
We exercise our method on a range of graphics applications that

span geometry processing and physical simulation. On the geometry

processing front, we apply our approach to surface parameterization

(§6.1), volume deformation (§6.2), and interpolation (§6.3). Halfway

between geometry processing and physical simulation, we show

that our method can be used as a pre-processing procedure to ob-

tain intersection-free input surfaces for a cloth simulator (§6.4).

Finally, we show that our approach can be used in volume sim-

ulation with dynamics (§6.5). In these tasks, we employ triangle

meshes with linear elements in 2D and tetrahedral meshes with

linear elements in 3D. We use a standard projected Newton solver

augmented with a line search for all tests. Alg. 1 shows pseudo-

code of our projected Newton, and includes our analytical Hessian

computation. To prevent elements from inverting with Symmetric

Dirichlet and Symmetric ARAP, we use the backtracking line search

of Smith and Schaefer [2015] to limit the step-size to the largest

inversion-avoiding value. For all remaining energies, we use a sim-

ple backtracking line search. We terminate the minimization when

the norm of the gradient falls below a threshold: ∥∇Ψ∥∞ ≤ 10
−4
.

In 2D, we solve linear systems using the Cholesky decomposition

from MKL [Intel 2018]. For AQP, the Laplacian decouples across

each dimension, so we pre-factorize and solve two independent

Function Projected_Newton_Solver(x0)
for i ← 0 to n do

bi ← ∇Ψ (xi) // Eqn. (5a)
if ∥bi ∥∞ ≤ 10

−4 then
return xi

end
Hi ← Project_Hessian (xi)
di ← −H−1i bi
αi ← Line_Search (xi , di)
xi+1 ← xi + αidi

end
return xn+1

Function Project_Hessian(x)
H← 0
for every quadrature point q do

F← Compute_Deformation_Gradient(q, x)
f ← vec (F)
{U, Σ,V} ← Compute_SVD(F)
{λi , ei } ← Eval_Energy_EigenSystem(U, Σ,V)
Hq ←

∑
i max(λi , 0) ei e⊤i

H← H + |q |
(
∂f/∂x

)⊤Hq
(
∂f/∂x

)
// Eqn. (5b)

end
return H

ALGORITHM 1: Projected Newton Pseudocode. Our ap-

proach allows Eval_Energy_EigenSystem(U, Σ,V) to be im-

plemented in closed-form.

systems. In 3D, computing this decomposition is more costly due to

the increased bandwidth of the stiffness matrix. Instead, we found

that Jacobi-preconditioned conjugate gradient provides adequate

performance. All SVDs and numerical eigendecompositions were

computed with Eigen [Guennebaud et al. 2010].

6.1 Surface Parameterization
Fig. 3 shows the parameterization of six meshes computed by mini-

mizing the Symmetric Dirichlet energy with our approach, where

each was initialized with a Tutte embedding of the 3D surface. In

Fig. 6 (left), we compare the performance for these examples ob-

tained with our analytic projected Newton solver, composite ma-

jorization [Shtengel et al. 2017] (using code provided by authors),

SLIM [Rabinovich et al. 2017] (using the optimized parallel code

provided by the authors), and a numerical projected Newton solver

(see, e.g., [Fu and Liu 2016]). The latter performs the numerical

eigendecomposition of 6×6 matrices corresponding to the x-based
Hessian per simplicial element. In contrast, our approach computes

the analytic eigensystems for F-based Hessians of size 4×4 eval-

uated per quadrature point. We also employed our closed-form

expressions to assemble the unclamped x-based Hessians in lieu of

auto-differentiation, so the implementation of the numerical pro-

jected Newton solver was also improved by our results.

For the Symmetric Dirichlet energy, composite majorization and

our method gave nearly identical performance in all but one test,

and yielded consistently faster solves than the numerical projected

:10 • B. Smith et al.

Symmetric Dirichlet

Ours CM Proj. Newton SLIM

Mesh Iters. Time Iters. Time Iters. Time Iters. Time

Bear 16 13.7 16 14.1 27 38.8 100 164.7

Buddha 17 25.6 17 25.6 15 36.5 144 461.5

Lucy 123 443.9 124 448.8 111 602.9 15256 163034

Man 16 8.7 17 9.0 16 14.2 94 106.7

Octopus 37 2.2 36 2.2 63 6.9 1442 270.5

Car 44 1.2 44 1.3 39 1.9 651 38.9

Car 2 49 23.0 50 23.5 113 88.2 176 178.6

ARAP

Ours S-based CM Proj. Newton AQP, α/β CM

Iters. Time Iters. Time Iters. Time Iters. Time

5 4.7 79 72.8 10 14.9 9 5.2

3 4.7 24 38.3 6 15.0 8 8.3

116 429.4 116 443.3 56 465.2 616 1177.9

6 3.4 21 12.1 9 8.6 12 4.2

75 4.9 184 12.7 57 6.8 409 14.6

175 5.5 198 6.7 77 3.8 338 4.7

8 3.7 21 9.9 10 7.6 27 6.6

Fig. 6. Total Newton iterations and wall clock time (s) to compute surface parameterizations with Symmetric Dirichlet (left) and ARAP (right) using F-based
per-quadrature point Hessian projection (Ours), composite majorization (CM), SLIM, and x-based per-element numerical projection (Proj. Newton). The
fastest time for each mesh is highlighted in blue. Multiple methods are highlighted in case of a tie, where two timings are within three percent of each
other. Two CM methods were considered for ARAP: one based on our invariants (S-based CM) and one based on the expansion from Shtengel et al. [2017]
(α/β -based CM, which is equivalent to AQP [Kovalsky et al. 2016]).

Newton solver. While the latter can terminate in fewer iterations

than the competing methods, the cost of the 6×6 per-element eigen-

decompositions outweigh these savings across all tests. Fig. 9 plots

the optimization progress for the bear model, both in terms of itera-

tions and wall clock time (in seconds). In the supplemental material,

we provide the plots for the other meshes, as well as the performance

statistics of a larger dataset of 41 models.

We also computed surface parameterizations using the ARAP

energy. The composite majorization for ARAP was not addressed

in Shtengel et al. [2017], so we considered two candidate deriva-

tions: one using the convex-concave decomposition obtained by

their similarity and anti-similarity expansion of F, and another ex-

pressed in terms of our S invariants (detailed derivations are in the

supplemental material). In contrast to our formulation, we observed

that both composite majorization schemes led to looser Hessian

approximations even in the regime where the energy Hessian is

already positive semi-definite. As shown in the supplement, the

behavior of CM is highly dependent on the choice of decomposition.

A naïve choice produces a solve that is equivalent to AQP [Kovalsky

et al. 2016], degrading convergence to first-order. In Fig. 10, we show

the number of iterations and the wall clock time (in seconds) for

the bear model. We compared the performance of these methods

to our solver over a dataset of 41 models, and complete results are

in the supplemental material. Fig. 6 (right) shows a selection of

these results. In a few instances, the x-based formulation completed

sooner, but for the vast majority of cases our approach was clearly

superior. In particular, for the low resolution car mesh (Car, Fig. 6),

the x-based formulation had the best performance. On a higher reso-

lution version of the same car mesh obtained through Catmull-Clark

subdivision (Car 2, Fig. 6), however, we found that our method had

the fastest performance.

6.2 Volume Deformation
We explored the effectiveness of our approach when computing

a 3D deformation. Given a volumetric cow mesh containing 23k

tetrahedra, we generated handles from the feet and head by hard-

constraining and rigidly transforming groups of surface mesh ver-

tices. The resulting position of the deformed mesh was computed by

minimizing the distortion energy when a handle was transformed.

Fig. 4 shows the results obtained after prescribing a transform to

each handle. Our projected Newton solver successfully converged

to a deformed shape, taking 2.46s with ARAP, 21.60s with Sym-

metric Dirichlet, and 23.19s with Symmetric ARAP. As composite

majorization does not generalize to 3D, we instead compared to the

per-element numerical projected Newton solver. Symmetric Dirich-

let and Symmetric ARAP with per-quadrature point (9×9) numerical

projection took a total of 40.91s and 53.97s, and Hessian projection

was 5.49× and 7.89× slower than our method, respectively. Symmet-

ric Dirichlet and Symmetric ARAP with per-element (12×12) numer-

ical projection took a total of 44.12s and 56.64s, and Hessian pro-

jection was 6.54× and 8.67× slower than our method, respectively.

Symmetric Dirichlet and Symmetric ARAP with [Stomakhin et al.

2012] projection took a total of 32.67s and 37.50s, and Hessian pro-

jection was 3.47× and 3.69× slower than our method, respectively.

For comparisons with the 9 × 9 and 12 × 12 eigendecompositions,

we also tested the LAPACK dsyevd and dsytrd/dorgtr/dsteqr
routines as implemented in Intel’s MKL library, but found them to be

roughly 30% slower than Eigen’s self-adjoint eigendecomposition.

We further compare against the projection technique from [Teran

et al. 2005], which requires a model that can be phrased in terms

of the C invariants. Computing the deformation in Fig. 4 with the

St. Venant-Kirchhoff (see Appendix F.3) material, which can be ex-

pressed in the C invariants, we found that our method took a total

of 33.95s, while [Teran et al. 2005] took 47.12s. Per-quadrature point

(9×9) numerical projection took 53.23s, and per-element (12×12) nu-

merical projection took 60.63s. Hessian projection with our method

was 2.78× faster than [Teran et al. 2005], 3.70× faster than per-

quadrature point numerical projection, and 4.89× faster than per-

element numerical projection.

This example also demonstrates the generality of our approach,

since we were able to extend Symmetric Dirichlet and Symmetric

ARAP from 2D to 3D with no additional numerical machinery. Fur-

thermore, we performed a live editing session with the Spot mesh

using our solver (see our supplemental video). Fig. 2 depicts different

Yoga poses generated by interactively manipulating handles and

then minimizing the Symmetric Dirichlet energy with our method.

Analytic Eigensystems for Isotropic Distortion Energies • :11

6.3 Shape Interpolation in 3D
The ability to robustly optimize 3D deformation energies also leads

to an effective method for 3D shape interpolation. Following the

framework of Chao et al. [2010], we defined an interpolated energy

as the convex combination of two deformation energies, i.e., Ψt =
(1 − t)Ψ1 + tΨ2. Given two shapes, the deformation energy Ψ1 was
measured against the first shape, while the deformation Ψ2 was

measured against the second shape. The gradient and Hessian of

this interpolated energy are simply respectively combinations of

Ψ1’s andΨ2’s gradient and Hessian. The sum of two positive-definite

Hessians is still positive definite, so by projecting the individual

Hessians we removed any indefiniteness from the sum. To obtain

the interpolated shape at some value t ∈ [0, 1], we minimized Ψt
for that value of t with our projected Newton solver. We tested this

technique by minimizing the Symmetric ARAP energy with two

examples. First, we interpolated between two poses of a bar (Fig. 7),

demonstrating that the solver is robust under bending and twisting

deformations. In this example, the bar model had 4,528 tetrahedra

and performed at 0.029s per frame. Next, we interpolated between

two poses of a hand (Fig. 5) in order to validate our method with

more complex input geometry. In this case, the hand model had

23,692 tetrahedra and took 0.21s per frame. For both sequences, we

initialized the solver using the result of the previous frame.

6.4 Intersection-Free Cloth Simulation Inputs
The minimization of volume distortion can also be used as a pre-

process to clean up animation artifacts prior to cloth simulation.

For the short film Bao, the input animations for a character often

contained self-intersections that would cause non-physical tangling

when a cloth simulation was later performed over its body (Fig. 8

(bottom-left)). These intersections were sufficiently severe that even

the robust collision response [Bridson et al. 2002; Harmon et al. 2008]

and untangling strategies [Baraff et al. 2003] in our production cloth

simulator were unable to produce usable results. These challenging

and non-physical configurations are quite common, as animators

typically focus their efforts on geometry that is visible from the cam-

era. Artifacts in non-visible regions can still destabilize a simulation,

however, requiring time consuming and tedious manual cleanup.

Previous attempts at Pixar to remove the self-intersections using

Fig. 7. We interpolate between an undeformed, tetrahedralized bar (left)
and a deformed bar (right) by minimizing the 3D Symmetric ARAP energy.

surface-only techniques failed to give robust results, but our perfor-

mant projective Newton solver enabled a volume-based workflow.

First, we generated a tetrahedral mesh for the T-pose of the body

surface and warped its elements via a simple Poisson solve to match

the surface of the input animation. These warped, intersecting vol-

umetric meshes were then set as the rest configuration x for our

optimization at their respective frames. Starting from the tetrahe-

dralized T-pose, we removed intersections by running a collision-

aware ARAP volume solve for every frame (Fig. 8 (top-middle)).

The intersection-free surfaces produced by these optimized volumes

were then used as an input body collider for our cloth simulator

(Fig. 8 (top-right)). The volumetric mesh contained 429,871 tetrahe-

dra, and each frame of animation was processed in 4.59 seconds, on

average. The workflow was sufficiently robust that it successfully

produced artifact-free results for every clothed character in the short

on the very first try. Our supplemental video displays an example

of this application, and further details can be found in [Wong et al.

2018].

6.5 Adding Dynamics
Distortion energies can be incorporated into volume simulations

with dynamics. In this case, a minor modification is applied to the

projected Newton solver so that mass and damping matrices are

added to the global Hessian matrix in order to control inertia and

time stepping. Moreover, the solver must often resolve inverted

elements induced by input animations. Our approach is especially

suited to this scenario, since our closed-form expressions are valid

for any value of deformation gradient, even under inversion. Fig. 1

shows a sequence from Cars 3 that was computed by integrating

our ARAP minimization into a production volume simulator. Our

expressions were also used to simulate the character Jack-Jack in

Incredibles 2. Our production volume simulator is a semi-implicit

solver [Baraff and Witkin 1998] that uses a BDF2 time discretiza-

tion [Ascher and Petzold 1998], combined with continuous colli-

sion detection (e.g. [Tang et al. 2010]), and with impulse-based and

penalty-based collision resolution [Bridson et al. 2002].

7 CONCLUSIONS AND FUTURE WORK
We have presented a systematic method for obtaining the analytic,

per-quadrature point eigensystem of any isotropic distortion energy.

The most immediate application of these results is to recent Do-

main Specific Languages (DSLs) for physical simulation, such as Ebb

[Bernstein et al. 2016] and Simit [Kjolstad et al. 2016]. The hypere-

lastic strain energies used in physical simulations are functionally

identical to geometric distortion energies. However, existing DSLs

have only been able to support a limited number of these energies, as

their gradients and Hessians are usually hand-derived and manually

implemented on a case-by-case basis.

Although automatic differentiation methods are available, they

result in slow and tortuous codes that are unable to discover struc-

tures like our closed-form rotation gradients (Eqn. (12)). Thus, no

existing method has been able to automatically convert an arbitrary

isotropic energy into efficient, parsimonious, projected Newton

code. The expressions we have presented accomplish exactly this

task. A user should now be able to type in any arbitrary isotropic

:12 • B. Smith et al.

Fig. 8. For the short film Bao, intersection-free surfaces were obtained by running a collision-aware volume simulation with our ARAP expressions (§6.4).
These were used as collision surfaces in a cloth simulator, and produced untangled clothing. Top row: In the original animation, an arm that is not visible
from the camera intersects the torso (left). Volume simulation finds the closest intersection-free state (middle). This state is then sent to the cloth simulator
(right). Bottom row: Cloth simulation using the original character animation (left). The character’s arm penetrates her shirt and artifacts appear along the hip.
Simulation results obtained using the intersection-free volume solution are artifact-free (right). ©Disney/Pixar

-5
-4
-3
-2
-1
 0
 1
 2
 3
 4

 0 5 10 15 20 25 30

Lo
g

R
es

id
ua

l

Iteration

Newton
SLIM

Proj. Newton
Comp. Major

Ours

-5
-4
-3
-2
-1
 0
 1
 2
 3
 4

 0 5000 10000 15000 20000 25000 30000 35000

Lo
g

R
es

id
ua

l

Wall Clock Time (ms)

Newton
SLIM

Proj. Newton
Comp. Major

Ours

Fig. 9. Solver iterations (left) and wall clock time (right) to compute a parameterization with the Symmetric Dirichlet energy over the bear mesh using our
method (pink circles), comp. major. (blue squares), per-element numerical projection (green upright triangles), SLIM (yellow diamonds), and Newton’s method
without Hessian projection (purple inverted triangle). The termination threshold is denoted by a dashed line.

strain energy, and moments later experiment with the behavior of

that energy. This will enable qualitative exploration of the space

of hyperelastic and geometric distortion energies in a way that

was not previously possible, and enable experimentation with more

sophisticated energies.

A better understanding of the underlying eigensystems also have

potential implications in model reduction. Many such reduction

methods use the intrinsic eigensystems of the underlying models

to both construct reduced-order basis functions [An et al. 2008;

von Tycowicz et al. 2013] and compute reduced-order gradients

and Hessians [Barbič and James 2005]. In particular, exact reduced-

order derivatives have only ever been discovered for the St. Venant-

Kirchhoff energy [Barbič and James 2005], which is a 4th order

polynomial. However, many of the distortion energies we examined

are lower-order polynomials, so with our S-centric invariants and

their eigensystems in hand, it may be possible to derive other closed-

form, reduced-order expressions.

Finally, the eigensystems we derived have implications for multi-

grid solvers [McAdams et al. 2011]. Our improved understanding

of the spectral behavior at each quadrature point may be able to

inform the design of better restriction and prolongation operators.

ACKNOWLEDGEMENTS
We would like to thank David Eberle and Audrey Wong for the

intersection-free simulation tests and Henry Garcia for running the

inflating tire test.

REFERENCES
M. Alexa, D. Cohen-Or, and D. Levin. 2000. As-rigid-as-possible Shape Interpolation.

In Proceedings of SIGGRAPH. 157–164.
S. S. An, T. Kim, and D. L. James. 2008. Optimizing Cubature for Efficient Integration of

Subspace Deformations. ACM Trans. Graph. 27, 5 (2008).

Analytic Eigensystems for Isotropic Distortion Energies • :13

-4.5
-4

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
 0

 0 2 4 6 8 10

Lo
g

R
es

id
ua

l

Iteration

Newton
AQP

Proj. Newton
S-Based CM

Ours

-4.5
-4

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
 0

 0 2000 4000 6000 8000 10000 12000 14000

Lo
g

R
es

id
ua

l

Wall Clock Time (ms)

Newton
AQP

Proj. Newton
S-Based CM

Ours

Fig. 10. Solver iterations (left) and wall clock time (right) to compute a parameterization with the ARAP energy over the bear mesh via our method (pink
circles), comp. major. with a S-based decomposition (blue squares), per-element numerical projection (green upright triangles), AQP (yellow diamonds), and
Newton’s method without Hessian projection (purple inverted triangle). The dashed line indicates the termination threshold.

Uri M Ascher and Linda R Petzold. 1998. Computer methods for ordinary differential
equations and differential-algebraic equations. Vol. 61. SIAM.

David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings
of SIGGRAPH. 43–54.

David Baraff, Andrew Witkin, and Michael Kass. 2003. Untangling Cloth. ACM Trans.
Graph. 22, 3 (2003).

J. Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-

Kirchhoff Deformable Models. ACM Trans. Graph. 24, 3 (2005), 982–990.
J. Barbič and Y. Zhao. 2011. Real-time Large-deformation Substructuring. ACM Trans.

Graph. 30, 4 (2011).
G. L. Bernstein, C. Shah, C. Lemire, Z. Devito, M. Fisher, P. Levis, and P. Hanrahan.

2016. Ebb: A DSL for Physical Simulation on CPUs and GPUs. ACM Trans. Graph.
35, 2 (2016).

D. Bommes, H. Zimmer, and L. Kobbelt. 2009. Mixed-integer Quadrangulation. ACM
Trans. Graph. 28, 3 (2009).

J. Bonet and R. D. Wood. 2008. Nonlinear continuummechanics for finite element analysis.
Cambridge University Press.

M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy. 2010. Polygon mesh processing.
AK Peters.

S. Bouaziz, M. Deuss, Y. Schwartzburg, T. Weise, and M. Pauly. 2012. Shape-Up: Shaping

Discrete Geometry with Projections. Comput. Graph. Forum 31, 5 (2012), 1657–1667.

S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing

Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4 (2014).
R. Bridson, R. Fedkiw, and J. Anderson. 2002. Robust treatment of collisions, contact

and friction for cloth animation. In ACM Trans. Graph. 594–603.
I. Chao, U. Pinkall, P. Sanan, and P. Schröder. 2010. A Simple Geometric Model for

Elastic Deformations. ACM Trans. Graph. 29, 4 (2010).
R. Chen and O. Weber. 2017. GPU-accelerated Locally Injective Shape Deformation.

ACM Trans. Graph. 36, 6 (2017).
S. Claici, M. Bessmeltsev, S. Schaefer, and J. Solomon. 2017. Isometry-Aware Precondi-

tioning for Mesh Parameterization. Comp. Graphics. Forum 36, 5 (2017), 37–47.

M. Eigensatz and M. Pauly. 2009. Positional, Metric, and Curvature Control for

Constraint-Based Surface Deformation. Comput. Graph. Forum 28, 2 (2009), 551–558.

X.-M. Fu and Y. Liu. 2016. Computing Inversion-free Mappings by Simplex Assembly.

ACM Trans. Graph. 35, 6 (2016).
X.-M. Fu, Y. Liu, and B. Guo. 2015. Computing Locally Injective Mappings by Advanced

MIPS. ACM Trans. Graph. 34, 4 (2015).
G. H. Golub and C. F. Van Loan. 2012. Matrix computations. Vol. 3. JHU Press.

G. Guennebaud, B. Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org. (2010).

D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. 2008. Robust Treatment of Simul-

taneous Collisions. ACM Trans. Graph. 27, 3 (2008), 23:1–23:4.
K. Horman and G. Greiner. 1999. MIPS: An efficient global parameterization method.

In Curve and Surface Design. 153–162.
Intel. 2018. Math Kernel Library. (2018). https://software.intel.com/en-us/mkl.

G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible Finite Elements for Robust Simulation

of Large Deformation. In SIGGRAPH/Eurog. Symp. on Comp. Anim. 131–140.
A. Jacobson, I. Baran, L. Kavan, J. Popović, and O. Sorkine. 2012. Fast Automatic

Skinning Transformations. ACM Trans. on Graphics 31, 4 (2012).
F. Kjolstad, S. Kamil, J. Ragan-Kelley, D. I. W. Levin, S. Sueda, D. Chen, E. Vouga, D. M.

Kaufman, G. Kanwar, W. Matusik, and S. Amarasinghe. 2016. Simit: A Language for

Physical Simulation. ACM Trans. Graph. 35, 2 (2016).
T. G. Kolda and B. W. Bader. 2009. Tensor decompositions and applications. SIAM Rev.

51, 3 (2009), 455–500.

S. Z. Kovalsky, M. Galun, and Y. Lipman. 2016. Accelerated Quadratic Proxy for

Geometric Optimization. ACM Trans. Graph. 35, 4 (2016).

L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S. J. Gortler. 2008. A Local/Global Approach

to Mesh Parameterization. Computer Graphics Forum 27, 5 (2008), 1495–1504.

T. Liu, S. Bouaziz, and L. Kavan. 2017. Quasi-Newton Methods for Real-Time Simulation

of Hyperelastic Materials. ACM Trans. Graph. 36, 3 (2017).
J. E Marsden and T. JR Hughes. 1994. Mathematical foundations of elasticity. Dover

Publications.

A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and E. Sifakis. 2011.

Efficient Elasticity for Character Skinning with Contact and Collisions. ACM Trans.
Graph. 30, 4 (2011).

R. Narain, M. Overby, and G. E. Brown. 2016. ADMM ⊇ Projective Dynamics: Fast

Simulation of General Constitutive Models. In Proc. of the ACM SIGGRAPH/Eurog.
Symp. on Comp. Anim. 21–28.

J. Nocedal and S. J Wright. 2006. Numerical optimization. Springer.
T. Papadopoulo and M. I. A. Lourakis. 2000. Estimating the Jacobian of the Singular

Value Decomposition: Theory and Applications. Springer, 554–570.
F. Pighin and J. P. Lewis. 2007. Practical Least-squares for Computer Graphics. In ACM

SIGGRAPH Courses. 1–57.
M. Rabinovich, R. Poranne, D. Panozzo, and O. Sorkine-Hornung. 2017. Scalable Locally

Injective Mappings. ACM Trans. Graph. 36, 2 (2017).
A. Shtengel, R. Poranne, O. Sorkine-Hornung, S. Z. Kovalsky, and Y. Lipman. 2017.

Geometric Optimization via Composite Majorization. ACM Trans. Graph. 36, 4
(2017).

E. Sifakis and J. Barbic. 2012. FEM Simulation of 3D Deformable Solids: A Practitioner’s

Guide to Theory, Discretization and Model Reduction. In ACM SIGGRAPH Courses.
B. Smith, F. de Goes, and T. Kim. 2018. Stable Neo-Hookean Flesh Simulation. ACM

Trans. Graph. 37, 2 (2018).
J. Smith and S. Schaefer. 2015. Bijective Parameterization with Free Boundaries. ACM

Trans. Graph. 34, 4 (2015).
O. Sorkine and M. Alexa. 2007. As-rigid-as-possible surface modeling. In Eurog. Sympo-

sium on Geometry processing, Vol. 4.
A. Stomakhin, R. Howes, C. Schroeder, and J. M. Teran. 2012. Energetically Consistent

Invertible Elasticity. In ACM SIGGRAPH/Eurog. Symp. Comp. Anim. 25–32.
M. Tang, D. Manocha, and R. Tong. 2010. Fast continuous collision detection using

deforming non-penetration filters. In Proceedings of I3D. ACM, 7–13.

J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. 2005. Robust Quasistatic Finite Elements

and Flesh Simulation. In ACM SIGGRAPH/Eurog. Symp. on Comp. Anim. 181–190.
C. D. Twigg and Z. Kačić-Alesić. 2010. Point Cloud Glue: Constraining simulations

using the Procrustes transform. In ACM SIGGRAPH/Eurog. Symp. on Comp. Anim.
45–54.

C. von Tycowicz, C. Schulz, H.-P. Seidel, and K. Hildebrandt. 2013. An Efficient Con-

struction of Reduced Deformable Objects. ACM Trans. Graph. 32, 6 (2013).
H. Wang. 2015. A Chebyshev Semi-iterative Approach for Accelerating Projective and

Position-based Dynamics. ACM Trans. Graph. 34, 6 (2015).
Audrey Wong, David Eberle, and Theodore Kim. 2018. Clean Cloth Inputs: Removing

Character Self-intersections with Volume Simulation. In ACM SIGGRAPH Talks.
Article 42, 2 pages.

H. Xu, F. Sin, Y. Zhu, and J. Barbič. 2015. Nonlinear Material Design Using Principal

Stretches. ACM Trans. Graph. 34, 4 (2015).

A GENERALITY OF S INVARIANTS
We show that tensor invariants can bewritten in terms of S instead of
C without loss of generality. Denoting the C invariants as IC= tr(C),

:14 • B. Smith et al.

I IC= ∥C∥2, and I I IC=det(C), it is straightforward to verify that:

IC = I2

I IC,2D = I2
2
− 2I2

3

I IC,3D =
1

2

I2
2
−
1

2

I4
1
+ I2

1
I2 + 4I1I3

I I IC = I2
3
.

Any isotropic energy written in terms of the C invariants can be

re-written with the above substitutions. The converse does not hold,

because the C=F⊤F squaring discards the sign information from F,
and precludes negative values of I1 and I3.

B ORTHOGONALITY OF TWIST AND FLIP MATRICES
Lemma B.1. The twist t and flip l vectors are orthogonal to the gradi-

ent of any S invariant in 2D and 3D, i.e.,
(
∂Ii/∂f

)⊤t= (
∂Ii/∂f

)⊤l=0.
Proof: We first note that the matrix versions of the invariant

gradients in Eqns. (10), (15), and (16) correspond to matrices of the

form UXiV⊤with diagonal matrices Xi . Since the middle term of

the twist matrix in 2D has a zero diagonal (Eqns. (11)), we have:(
∂I1
∂f

)⊤
t = r⊤t = R : T =

1

√
2

tr

©«
[
1 0

0 1

] [
0 −1

1 0

]ª®¬ = 0,

(
∂I2
∂f

)⊤
t = 2f⊤t = 2F : T =

2

√
2

tr

©«
[
σ1 0

0 σ2

] [
0 −1

1 0

]ª®¬ = 0,

(
∂I3
∂f

)⊤
t = g⊤t = G : T =

1

√
2

tr

©«
[
σ2 0

0 σ1

] [
0 −1

1 0

]ª®¬ = 0.

Similarly, the flip matrix has a zero diagonal and thus it is orthogonal

to the invariant gradients. The same proof holds in 3D trivially. □

C 2D ARAP HESSIAN IMPLEMENTATION
The following 2D Hessian code is implemented using Eigen [Guen-

nebaud et al. 2010]. We assume that a SVD implementation that

moves all reflections into Σ and a vec function are both available.

using namespace Eigen;
Matrix4d ARAP::Hessian(const Matrix2d& F) {

// Get the SVD of F
Matrix2d U, Sigma, V;
SVD(F, U, Sigma, V);

// Build the eigenvector
Matrix2d twist;
twist << 0, 1, -1, 0;
twist *= 1.0 / sqrt(2.0);
const Vector4d e = vec(U * twist * V.transpose());

// Filter the eigenvalue to guarantee SPD-ness
const double I_1 = Sigma.trace();
const double filtered = (I_1 >= 2.0) ? 2.0 / I_1 : 1.0;

// Build the final Hessian
Matrix4d H;
H.setIdentity();
H -= filtered * (e * e.transpose());
H *= 2.0;

return H;
}

D SCALING MODE MATRIX
The general matrix A that must be solved in 2D to obtain the final

two eigenpairs is given by the entries:

a2Di j =
∂Ψq

∂I3
+
∂2Ψq

∂I2
1

+4I3
∂2Ψq

∂I2
2

+I3
∂2Ψq

∂I2
3

+ 2I1
∂2Ψq

∂I1∂I2
+2I2

∂2Ψq

∂I2∂I3
+I1
∂2Ψq

∂I3∂I1

a2Dii = 2

∂Ψq

∂I2
+
∂2Ψq

∂I2
1

+4σ 2

i
∂2Ψq

∂I2
2

+σ 2

j
∂2Ψq

∂I2
3

+ 4σi
∂2Ψq

∂I1∂I2
+4I3

∂2Ψq

∂I2∂I3
+2σj

∂2Ψq

∂I3∂I1
.

In 3D, the matrix entries are:

a3Di j = σk
∂Ψq

∂I3
+
∂2Ψq

∂I2
1

+4σiσj
∂2Ψq

∂I2
2

+σk I3
∂2Ψq

∂I2
3

+ 2
(
I1−σk

) ∂2Ψq
∂I1∂I2

+2σk

(
I2−σ

2

k

) ∂2Ψq
∂I2∂I3

+σk
(
I1−σk

) ∂2Ψq
∂I3∂I1

a3Dii = 2

∂Ψq

∂I2
+
∂2Ψq

∂I2
1

+4σ 2

i
∂2Ψq

∂I2
2

+σ 2

j σ
2

k
∂2Ψq

∂I2
3

+ 4σi
∂2Ψq

∂I1∂I2
+4I3

∂2Ψq

∂I2∂I3
+2

I3
σi

∂2Ψq

∂I3∂I1
.

The two equations above can be further simplified using σiσj =
I3/σk . We found that this substitution can sometimes help during

implementation, as each entry then only depends on one singular

value in addition to the three invariants.

E DECOUPLED 3D SCALING EIGENVALUES
In many cases, the 3D scaling modes become decoupled, in which

case their eigenvalues can bewritten down explicitly. The expression

for λ
x-scale

is given in Eqn. (27), and the other two eigenvalues are:

∂2Ψq

∂f2
d2 =

[
2

∂Ψq

∂I2
+
∂2Ψq

∂I2
1

+4σ 2

2

∂2Ψq

∂I2
2

+
I2
3

σ 2

2

∂2Ψq

∂I2
3

+4σ2
∂2Ψq

∂I1∂I2

+4I3
∂2Ψq

∂I2∂I3
+2

I3
σ2

∂2Ψq

∂I3∂I1

]
d2=λy-scale

d2

∂2Ψq

∂f2
d3 =

[
2

∂Ψq

∂I2
+
∂2Ψq

∂I2
1

+4σ 2

3

∂2Ψq

∂I2
2

+
I2
3

σ 2

3

∂2Ψq

∂I2
3

+4σ3
∂2Ψq

∂I1∂I2

+4I3
∂2Ψq

∂I2∂I3
+2

I3
σ3

∂2Ψq

∂I3∂I1

]
d3=λz-scale

d3.

F ADDITIONAL ENERGY EIGENSYSTEMS
We provide the closed-form expressions for the eigensystems of

extended versions of the distortion energies from §5.

Analytic Eigensystems for Isotropic Distortion Energies • :15

F.1 Co-rotational Energy
The Co-rotational energy (see, e.g., [McAdams et al. 2011]) is defined

as ΨCR = µ∥F − R∥2 + κ
2
tr
2 (S − I), where κ is a volume penalty. It

can be written using the S invariants as ΨCR = µ(I2 − 2I1 + d
2) +

κ
2
(I2
1
− 2dI1 + d

2). In 2D, the eigensystem becomes:

λ2D

1
= 2µ + 2κ(I1 − 2 − 2µ)/I1 e1 = t

λ2D

2
= 2µ + 2κ e2 = r/

√
2

λ2D

3,4 = 2µ e3,4 = {p, l}.

In 3D, these expressions become:

λ3D

1
= 2µ + 2κ(I1 − 3 − 2µ)/(σ2 + σ3) e1 = t1

λ3D

2
= 2µ + 2κ(I1 − 3 − 2µ)/(σ3 + σ1) e2 = t2

λ3D

3
= 2µ + 2κ(I1 − 3 − 2µ)/(σ1 + σ2) e3 = t3

λ3D

4
= 2µ + 3κ e4 = r/

√
3

λ3D

5...9 = 2µ e5...9 = 5D subspace.

Aside from the scaling by µ, the additions to the ARAP energy are

most visible in the ti eigenvalues, where a newκ(I1−3) term appears.

Rotation also becomes a unique eigenvector. Similar to ARAP, there

is no need to explicitly construct Co-rotational’s 5D subspace in

practice. See Appendix C.

F.2 Symmetric ARAP
The Symmetric ARAP energy [Shtengel et al. 2017] is defined as

ΨSARAP = µ/2
(
∥F − R∥2 + ∥F−1 − R−1∥2

)
. Using the S invariants,

this energy can be written in 2D as:

Ψ2D

SARAP
=

µ

2

I2 − µI1 +
µ

2

I2

I2
3

− µ
I1
I3
+ µd2.

The 2I1 and 2I1/I3 terms are new relative to the 2D Symmetric

Dirichlet. The 2D eigensystem is:

λ2D

i = µ
(
1 − 2/σ 3

i + 3/σ
4

i

)
ei = di

λ2D

3
= µ + µ

(
I2/I3 − I1 + 1

)
/I2
3

e3 = l

λ2D

4
= µ + µ

(
(I2 + I1)/I

2

3
− I2I1/I

3

3
− 2

)
/I1 e4 = t.

The 3D version energy is expressed in terms of S invariants as:

Ψ3D

SARAP
=

µ

2

I2 − µI1 +
µ

8

(
I2
1
− I2

I3

)
2

− µ
I1
I3
−

µ

2

(
I2
1
− I2

I3

)
+ µd2.

The eigensystem contains equivalent scaling modes:

λ3D

i = µ
(
1 − 2/σ 3

i + 3/σ
4

i

)
ei = di .

Its twist eigenpairs are:

λ3D

i+3=µ+
µ

σj+σk

1

σ 2

j
+

1

σ 2

k

−
1

σ 3

j
−

1

σ 3

k

−2

 ei+3= ti ,

which are defined over the (i, j,k) triplets (1, 2, 3), (2, 3, 1) and (3, 1, 2).
Finally, the flip eigenpairs are:

λ3D

i+6=µ

1+
1

(σjσk)
2
+
σ 2

j +σ
2

k

(σjσk)
3
−

1

σ 2

j σk
−

1

σjσ
2

k

 ei+6= li .

F.3 St. Venant-Kirchhoff
The St. Venant-Kirchhoff energy is defined asΨStVK = µ∥E∥+κ

2
tr
2 (E).

Using the S invariants, this energy can be written in 3D as:

Ψ3D

StVK
=

κ

8

(I2 − 3)
2 +

µ

8

(
8I1I3 + I

2

2
+ 2I2

1
I2 − 4I2 − I

4

1
+ 6

)
.

The 3D twist and flip components of the eigensystem are:

λ3D

i = −µ +
κ

2

(I2 − 3) + µ
(
σ 2

j + σ
2

k − σjσk

)
ei = ti ,

λ3D

i+3 = −µ +
κ

2

(I2 − 3) + µ
(
σ 2

j + σ
2

k + σjσk

)
ei+3= li .

The remaining three components are given by the eigensystem of

the 3 × 3 matrix A = QΛQT
with entries:

a3D

ii = −µ +
κ

2

(I2 − 3) +
(
κ + 3µ

)
σ 2

i ,

a3D

i j = κσiσj .

Given the eigenvalues Λi and eigenvectors Qi of A, we complete St.

Venant-Kirchhoff’s eigensystem with:

λ3D

i+6 = Λi ei+6=vec
(
U diag

(
Qi

)
VT

)
.

Observe that, like the energy itself, St. Venant-Kirchhoff’s eigensys-

tem is singularity free.

	Abstract
	1 Introduction
	2 Related Work
	2.1 First-Order Methods
	2.2 Second-Order Methods

	3 Definitions
	4 Our Approach
	4.1 S-centric Invariants
	4.2 Eigensystems of Invariants
	4.3 Eigensystems of Arbitrary Isotropic Energies

	5 Energy Eigensystems
	5.1 ARAP Energy
	5.2 Symmetric Dirichlet
	5.3 MIPS energy
	5.4 Discussion

	6 Results
	6.1 Surface Parameterization
	6.2 Volume Deformation
	6.3 Shape Interpolation in 3D
	6.4 Intersection-Free Cloth Simulation Inputs
	6.5 Adding Dynamics

	7 Conclusions and Future Work
	References
	A Generality of S invariants
	B Orthogonality of Twist and Flip Matrices
	C 2D ARAP Hessian implementation
	D Scaling Mode Matrix
	E Decoupled 3D Scaling Eigenvalues
	F Additional Energy Eigensystems
	F.1 Co-rotational Energy
	F.2 Symmetric ARAP
	F.3 St. Venant-Kirchhoff

