
Scalable Laplacian Eigenfluids

QIAODONG CUI, PRADEEP SEN, University of California, Santa Barbara
THEODORE KIM, Pixar Animation Studios

Fig. 1. Paddle wheel scene: Top row: r = 100, r = 200, r = 1000 basis functions are used. Bottom row: r = 2000, r = 4000, r = 12600 basis functions are used.
Previous approaches have only been able to achieve r ≈ 500, and would have needed 2.25 TB of memory to simulate the r = 12600 case.

The Laplacian Eigenfunction method for fluid simulation, which we refer
to as Eigenfluids, introduced an elegant new way to capture intricate fluid
flows with near-zero viscosity. However, the approach does not scale well,
as the memory cost grows prohibitively with the number of eigenfunctions.
The method also lacks generality, because the dynamics are constrained to
a closed box with Dirichlet boundaries, while open, Neumann boundaries
are also needed in most practical scenarios. To address these limitations, we
present a set of analytic eigenfunctions that supports uniform Neumann and
Dirichlet conditions along each domain boundary, and show that by carefully
applying the discrete sine and cosine transforms, the storage costs of the
eigenfunctions can be made completely negligible. The resulting algorithm
is both faster and more memory-efficient than previous approaches, and
able to achieve lower viscosities than similar pseudo-spectral methods. We
are able to surpass the scalability of the original Laplacian Eigenfunction
approach by over two orders of magnitude when simulating rectangular
domains. Finally, we show that the formulation allows forward scattering to
be directed in a way that is not possible with any other method.

CCS Concepts: • Computing methodologies → Physical simulation;

Additional Key Words and Phrases: fluid simulation, physically based ani-
mation

Authors’ addresses: Qiaodong Cui, Pradeep Sen, University of California, Santa Barbara;
Theodore Kim, Pixar Animation Studios.

© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3197517.3201352.

ACM Reference Format:
Qiaodong Cui, Pradeep Sen and Theodore Kim. 2018. Scalable Laplacian
Eigenfluids. ACM Trans. Graph. 37, 4, Article 87 (August 2018), 12 pages.
https://doi.org/10.1145/3197517.3201352

1 INTRODUCTION
While much progress has been made in fluid simulation over the last
decade, efficiently simulating inviscid fluids that do not suffer from
excessive numerical dissipation remains an ongoing challenge. Even
in simple scenarios, the results can look unconvincingly viscous if
any extraneous numerical diffusion is present.

Methods based on the traditional method of Stam [1999] usually
compensate for the dissipated energy using techniques such as
vorticity confinement [Fedkiw et al. 2001] or IVOCK [Zhang et al.
2015]. Alternatively, methods can be devised that are non-dissipative
by construction, though these can involve asymmetric linear solves
and non-linear Newton iterations [Mullen et al. 2009].
The method of Laplacian Eigenfunctions [De Witt et al. 2012],

which we shall refer to as the Eigenfluids method, proposes an al-
ternative approach for simulating inviscid flows. The simulation
occurs over a set of eigenfunctions, and the primary variables are
the coefficients of these functions. The functions are inherently
divergence-free, so the dissipation introduced by a pressure projec-
tion is avoided entirely. The advection operator is formulated in
terms of the eigenfunctions, so the numerical smearing that occurs

ACM Transactions on Graphics, Vol. 37, No. 4, Article 87. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201352
https://doi.org/10.1145/3197517.3201352

87:2 •

during semi-Lagrangian backtraces is also eliminated. The functions
have global support, so interesting results appear with even a hand-
ful of coefficients. The simulations are fast and lively, and possess
natural connections to model reduction [Liu et al. 2015].

With these advantages come several significant drawbacks. Like
most model reduction methods, Eigenfluids require a large basis
matrix to be present in memory at runtime. Each column of the
matrix represents an eigenfunction sampled over some spatial par-
titioning, e.g., a regular grid or a tetrahedral mesh. When a high
spatial resolution is needed, only a limited number of eigenfunc-
tions can be used, so the 3D simulations in previous work were
limited to several hundred basis functions (540 for [De Witt et al.
2012] and 230 for [Liu et al. 2015]). However, compelling, fine-scale
dynamics continue to appear when more basis functions are added,
so a practical method for improving the scalability is needed.

If the domain is rectangular–which is an extremely common pro-
duction scenario [Angelidis 2017]–a potential solutionwas proposed
in De Witt et al. [2012]: the eigenfunctions can be written in closed
form. In lieu of storing a large matrix, entries can be recomputed on-
the-fly at runtime. However, evaluating these functions dominates
the running time and makes the algorithm unacceptably slow.

The Eigenfluids method thus appears to possess the classic zero-
sum tradeoff of time vs. memory, but we show that this is not in
fact the case. By carefully applying discrete sine (DST) and cosine
(DCT) transforms over a rectangular domain, it is in fact possible to
arrive at an algorithm that is both faster and more memory efficient
than previous approaches. This is achieved without introducing any
numerical approximations. Using our approach, we are able to scale
the original Eigenfluids algorithm by an additional two orders of
magnitude. We are able to efficiently simulate scenarios that would
otherwise have taken terabytes of memory or more than an hour of
per-frame computation.
The second major limitation of the Eigenfluids method is that it

is constrained to a closed box, because analytic eigenfunctions have
only been presented for boundary conditions that are Dirichlet on
the velocity. However, many practical scenarios require Neumann
velocity boundaries that allow mass to flow out of the domain. To
remove this limitation, we derive the analytic eigenfunctions that
arise when 1 to 6 walls of a 3D domain are set uniformly to Neumann
boundaries. Fortunately, the DCT and DST accelerations from the
Dirichlet case carry over to the Neumann case as well.
As the algorithm scales, a CFL-like stability condition emerges

that makes it necessary to use an implicit solver. While the under-
lying advection tensor is inherently anti-symmetric, we find that
symmetric solvers can still be used, because the resulting systems
are extremely well-conditioned. We additionally find that as Eigen-
fluids is scaled up to thousands of basis functions, the bottleneck
becomes the storage of the sparse, 3rd-order tensor for advection.
However, most of these entries are near-zero, and we show that
∼90% of the entries can be discarded while still retaining the overall
character of the flow. All of these advantages can be leveraged to
obtain a real-time version of the algorithm.
Our method shares many similarities with the wide family of

spectral methods that also employ fast transformations [Boyd 2001;
Canuto et al. 2007; Gottlieb and Orszag 1977; Trefethen 2000], so we

perform an in-depth comparison in §6 that shows that our algorithm
is capable of achieving significantly lower viscosities.

Finally, the Eigenfluids advection formulation offers precise and
direct control of the phenomenon of forward scattering, i.e., the rate
at which energy cascades from low to high frequencies. Using this
mechanism, we can stably produce aesthetically interesting flows
that are not possible with any other method.

In summary, our work makes the specific contributions:

• Use of DCT and DST to remove the memory limitations im-
posed by the eigenfunction basis matrix.
• Generalization of the analytic eigenfunctions of Eigenfluids
to support Neumann velocity boundaries.
• Directable forward scattering through tensor reweighting.
• Demonstration of effective lossy compression on the 3rd-
order advection tensor.
• Demonstration of support for real-time interaction.
• Lower viscosity flows than equivalent spectral methods.

2 RELATED WORK
Stam [1999] introduced the now-standard method for fluid simula-
tion for computer graphics in the form of an advection-projection
solver. However, both the pressure projection and semi-Lagrangian
advection schemes introduce numerical dissipation that many sub-
sequent works have sought to mitigate. The most direct method to
do this is to increase the underlying grid resolution, so simulations
have been performed on large grids such as octrees [Losasso et al.
2004], multigrid hierarchies [Ferstl et al. 2014; McAdams et al. 2010],
and sparsely paged grids [Setaluri et al. 2014].
Methods for re-injecting dissipated energy have also been ex-

plored, such as vorticity confinement [Fedkiw et al. 2001], vortex par-
ticles [Selle et al. 2005], IVOCK [Zhang et al. 2015], and turbulence
methods that are applied as a post-process [Kim et al. 2008; Narain
et al. 2008; Schechter and Bridson 2008]. The structure-preserving
properties of Lagrangian methods have also been leveraged in the
form of vortex filament [Weissmann and Pinkall 2010] and vortex
sheet methods [Brochu et al. 2012; Pfaff et al. 2012]. Leveraging the
respective advantages of both the Eulerian and Lagrangian frames,
FLIP [Zhu and Bridson 2005], APIC [Jiang et al. 2015], and PPIC [Fu
et al. 2017] methods have also been developed.
Mullen et al. [2009] introduced the first method in computer

graphics for simulating totally inviscid flows. While the dynamics
of a zero-viscosity “super-fluid” can be somewhat unintuitive, be-
ing able to achieve this regime then allows the user to gradually
dial in the desired level of viscosity. However, the method can be
computationally expensive, as it involves asymmetric linear solves
and non-linear Newton iterations. The Schödinger’s Smoke [Chern
et al. 2016] algorithm also exhibits inviscid behavior, but it does not
contain a viscosity parameter, so direct comparisons are difficult.
The method of Laplacian Eigenfunctions, which we refer to as

Eigenfluids, was developed by De Witt et al. [2012], and further sta-
bilized using variational methods by Liu et al. [2015]. While we will
describe the method in detail later (§3), we will position it within the
literature here. Because the method begins to produce non-trivial
results even with a very small number of degrees of freedom, it can
be seen as a model reduction method, albeit one that does not need

ACM Transactions on Graphics, Vol. 37, No. 4, Article 87. Publication date: August 2018.

Scalable Laplacian Eigenfluids • 87:3

the example snapshots required by previous approaches [Kim and
Delaney 2013; Stanton et al. 2013; Treuille et al. 2006]. Instead of
discovering a basis from example data, the simulation is performed
in the space of Laplacian eigenvectors defined over the simulation
mesh. Due to the correspondence of these eigenvectors to the intrin-
sic frequencies of the mesh, numerical dissipation can be eliminated
entirely. Interestingly, the work of Gupta and Narasimhan [2007]
also performed reduced fluid simulations in an analytic (Legendre)
space, but traded spatial resolution for rendering efficiency.

Model reduction methods suffer from the problem of basis matrix
storage. If a simulation on a very high resolution O (N 3) velocity
field is desired, a matrix is required where each column is effectively
a copy of the high resolution field. A matrix with r columns takes
up O (rN 3) memory, so the system capacity is quickly exhausted
for r ≈ 500. Several approaches have tried to address this issue
through modularization [Wicke et al. 2009] and JPEG-like compres-
sion [Jones et al. 2016], but the issue is far from resolved. We will
show that it is possible to store the analytic Eigenfluid basis inO (r)
memory, which removes the basis storage problem entirely.
Our method makes extensive use of discrete sine (DST) and co-

sine (DCT) transforms, and thus shares connections with a variety
of spectral fluid solvers. Stam [1999, 2002] first showed that by
imposing periodic boundaries, the FFT could be used to acceler-
ate the pressure projection stage of Stable Fluids. Later, Long and
Reinhard [2009] showed that this approach could be extended to
Dirichlet boundaries by using the DST and DCT, and Henderson
[2012] showed that it scales favorably over multiple processors. We
will show that by leveraging the correspondence between these
spectral modes and the eigenfunctions of the Laplacian, and by
performing the non-linear advection entirely within the spectral
domain, we can efficiently compute inviscid flows.

The relationship to spectral solvers extends more widely to spec-
tral methods in general. Spectral methods have a long history stretch-
ing back to Lanczos [1938], and gained wider attention in fluid me-
chanics during the 1970s due to the work of Orszag [1969, 1971].
Many excellent texts exist that describe these methods [Boyd 2001;
Canuto et al. 1988; Trefethen 2000], but relative to our current
method, the use of Chebyshev and Legendre polynomials to han-
dle non-periodic boundary conditions is the most relevant feature
[Canuto et al. 2007; Gottlieb and Orszag 1977]. We will perform an
extensive comparison of our own method against a modern pseudo-
spectral library [Burns et al. 2017] in §6, and show that our method
can simulate flows with significantly lower viscosity.

3 THE METHOD OF LAPLACIAN EIGENFUNCTIONS
Notation: We will use unbolded lower case to denote scalars (k),
bold lower case to denote vectors (u), and bold upper case to denote
matrices (C). An overdot denotes a time derivative (u̇ = ∂u

∂t), and
superscripts denotes the timestep (wt and wt+1). Angle brackets
denote the inner product of two fields, i.e., ⟨u,Ψ⟩ =

∫
Ω
u · ΨdΩ.

The 3rd-order advection tensor C ∈ Rr×r×r appears throughout.
Note, the order here refers to the tensor rank, not the Taylor trun-
cation order. We denote contraction along the third index using the
×3 notation [Golub and Van Loan 2012]. This yields a matrix, e.g.,
C ×3 w = C, where C ∈ Rr×r . Products along the other two indices

can be written using the usual matrix notation, but are then applied
to all r matrices along the third index, i.e.,wTCw = xwhere x ∈ Rr .
Algorithm: We will first summarize the Eigenfluids approach of
De Witt et al. [2012] for the Navier-Stokes equations:

u̇ = −u · ∇u + ν∇2u − ∇p + f
∇ · u = 0.

(1)

Here, ν denotes viscosity, p the pressure, and f external forces. The
velocity field u is usually discretized on a uniform grid of size N ×
N × N = N 3.

In the Eigenfluids algorithm, u is encoded as a linear combination
of vector eigenfunctions, Ψ. These functions are defined according
to a vector wave index, k = (kx ,ky ,kz). EachΨ has three associated
scalar eigenfunctions, Φx (k), Φy (k), and Φz (k), which respectively
specify the x , y, and z velocity components for that index, i.e., Ψ =
{Φx (k),Φy (k),Φz (k)}. The total number of eigenfunctions being
simulated is denoted r , which is the reduced simulation rank.

We use the notation Ψi for cases where it is necessary to generi-
cally iterate over all r eigenfunctions. This allows us to write the
velocity field u in terms of the eigenfunctions Ψ simply as:

u =
r∑
i=1

wiΨi . (2)

All of the weightswi are then concatenated into a vector w ∈ Rr . If
the number of eigenfunctions r is much less than N 3, then a model
reduction-like acceleration is realized, as we only have to solve a
system of sizeO (r2) instead ofO (N 3) (i.e., an N 3 × N 3 matrix with
O (N 3) sparsity). In practice, each Ψi is sampled onto the same grid
as u, and a large matrix U ∈ RN

3×r is used to transform between
the two representations. Thus, Eqn. 2 can be written as u = Uw.

The basis vectors Ψi are found by solving for the eigenfunctions
of the vector Laplacian, ∇2Ψi = λiΨi , with Dirichlet conditions im-
posed along the boundary Γ, i.e., ΨΓ = 0. On a rectangular domain,
these eigenfunctions have an analytic form that we will describe
in §4. The velocity field formed by these eigenfunctions is intrin-
sically divergence-free, so if the simulation is performed in this
coordinate system, no pressure projection step is needed. Similar
to Stam [1999; 2002], damping becomes a point-wise exponential:
wt+1
k = wt

ke
νλi∆t . External forces f can be projected onto the eigen-

functions using UT f = f̂ .
In order to formulate the advection operator, a vorticity basis

function ϕ is constructed for each eigenfunctions by computing
ϕi = ∇ × Ψi . A 3rd-order advection tensor C is then computed with
entries C(д,h, i) = [∇ × (ϕh × Ψi)] · ϕд . The contribution of the ad-
vection operator to the time derivative can then be written,

ẇд =

r∑
h=1

r∑
i=1

whwiC(д,h, i), (3)

which can be expressed in tensor form as ẇ = wTCw. Following
De Witt et al. [2012], the complete equations can now be integrated
using forward Euler,

wt+1 =
(
wt + ∆t

(
wt
)T
Cwt + ∆t f̂

)
eν∆tΛ, (4)

where Λ denotes a diagonal matrix of all the vector Laplacian eigen-
values, and we assume the mass associated with the force term is

ACM Transactions on Graphics, Vol. 37, No. 4, Article 87. Publication date: August 2018.

87:4 •

equal to one. Applying an alternate explicit method such as RK4 or
exponential integration also becomes straightforward.
Discussion: Once w has been stepped forward in time, the ve-

locity field u can be reconstructed via u = Uw and used to advect
particles or densities. Both the storage and application of U presents
challenges. If a high-resolution velocity field is needed, e.g.,N = 256,
then the RN 3×r matrix quickly consumes all available memory as r
is increased. In addition to these memory issues, the computational
cost of the Uw and UT f matrix-vector multiplies can dominate the
overall running time. In De Witt et al. [2012], these multiplies can
take up to 84% of the running time, and similar stages in other
algorithms [Kim and Delaney 2013] take up to 99%.

Alternatively, De Witt et al. [2012] observe that if analytic eigen-
functions are available, then storage issues can be eliminated entirely
by recomputing the entries of U on the fly. Our own measurements
show that this increases the already considerable expense of the
matrix-vector multiply by an additional 5× to 7× (Table 1), and
makes the overall algorithm prohibitively slow.

4 FAST, GENERAL, ANALYTIC BASIS FUNCTIONS
In this section, we will first show how to use DCT and DST to
improve both the memory complexity and runtime performance of
the Eigenfluids algorithm. Specifically, the memory complexity will
drop from O (rN 3) to O (r), effectively removing the basis storage
problem. The running time will shift from O (rN 3) to O (N 3 logN),
which will yield an order of magnitude speedup in practice.

With these improvements in place, we will present a set of analyt-
ical eigenfunctions that support any combination of Neumann and
Dirichlet velocity conditions along the boundaries of the simulation.
These functions will be chosen so that the accelerations from DCT
and DST can be applied with only minor modifications.

4.1 Fast Projection and Reconstruction
The DCT can be used to perform fast, memory-efficient projections
and reconstructions. For simplicity, we will show this in 2D, but
generalization to 3D is straightforward. De Witt et al. [2012] pro-
posed eigenfunctions defined over Ω ∈ [0,π]2 that satisfy Dirichlet
boundary conditions along its walls,

Φx (k) = −
1
ηk

ky sin(kxx) cos(kyy)

Φy (k) =
1
ηk

kx cos(kxx) sin(kyy),
(5)

where kx ,ky ∈ Z+. We use the normalization term ηk to denote
the square root of −λk, i.e., ηk =

√
k2x + k

2
y . It is straightforward to

project a force field f onto these functions using a mix of sine and
cosine transforms. For example, the projected x and y components
of f correspond to:

⟨fx ,Φx (k)⟩ = −
1
ηk

ky

"
Ω
fx sin(kxx) cos(kyy) dx dy〈

fy ,Φy (k)
〉
=

1
ηk

kx

"
Ω
fy cos(kxx) sin(kyy) dx dy.

(6)

The first projection can be computed by performing a DST in the x
direction and a DCT in the y direction, and the second by applying

DCT in x and DST in y. The result is a delta function centered at k
which is scaled by the projected quantity of interest:

⟨fx ,Φx (k)⟩ = −
1
ηk

ky f̂x (k)〈
fy ,Φy (k)

〉
=

1
ηk

kx f̂y (k).
(7)

Only the f̂x (k) and f̂y (k) coefficients need to be stored, which
takes O (r) memory; the basis matrix is implicitly encoded by the
DCT/DST. Velocity reconstruction follows analogously: for example,
the elements of w can be restated as ûx (k) and mapped into 2D
frequency space according to their wave index. An IDST in the x
direction followed by an IDCT in y then recovers ux . In 3D, an addi-
tional trigonometric function appears in the product, which requires
an additional DST or DCT to be performed in a third direction, but
the approach is otherwise identical.

The fact that these bases take on a compact structure under these
transforms was previously observed by Jones et al. [2016], but they
did not use it to accelerate an Eigenfluids simulation. The transfor-
mation also has fundamental connections to the spectral methods of
Stam [1999; 2002], Long and Reinhard [2009] and Henderson [2012],
but they all used the transform to accelerate pressure projection,
not velocity reconstruction.

4.2 Enabling Neumann Boundaries
The above transform only applies to analytic eigenfunctions corre-
sponding to Dirichlet boundary conditions. We now present eigen-
functions that correspond to any number of walls being set to a
Neumann condition, and show that the DCT-based accelerations can
be applied to these functions as well. For simplicity, we will again
present results in 2D, but the extension to 3D is straightforward.
For completeness, the eigenfunctions for all the 3D cases are listed
in the supplementary material.
Laplacian eigenfunctions can more generally be viewed as solu-

tions to the homogeneousHelmholtz equation:∇2д(x ,y) = λkд(x ,y).
In 2D, the function takes the form,

д(x ,y) =
(
a cos(kxx) + b sin(kxx)

) (
c cos(kyy) + d sin(kyy)

)
, (8)

where (a,b, c,d) are undetermined constants. Each velocity eigen-
function then becomes an instance of this solution:
Φx (k) =

(
ax cos(kxx) + bx sin(kxx)

) (
cx cos(kyy) + dx sin(kyy)

)
Φy (k) =

(
ay cos(kxx) + by sin(kxx)

) (
cy cos(kyy) + dy sin(kyy)

)
.

The four-walled Dirichlet solution is retrieved for the special case
where ax = dx = by = cy = 0, bxcx = −ky/ηk, and aydy = kx/ηk.
We can solve for other solutions by coupling the two equations via
the divergence-free constraint ∇ · Ψ = 0, which expands to:

kxbxcx + kyaydy = 0 kxbxdx − kyaycy = 0 (9)
−kxaxcx + kybydy = 0 kxaxdx + kybycy = 0. (10)

Additionally, we observe that the following conditions will minimize
the number of DSTs and DCTs that are needed:

axbx = 0 cydy = 0 (11)
ayby = 0 cxdx = 0. (12)

ACM Transactions on Graphics, Vol. 37, No. 4, Article 87. Publication date: August 2018.

Scalable Laplacian Eigenfluids • 87:5

(a) Dirichlet boundaries along all walls

(b) Neumann boundaries on left and right walls, Dirichlet along top and bottom

Fig. 2. Visualization of the first three Dirichlet and Neumann bases in 2D
using line integral convolution. Mass cannot flow through the walls in the
Dirichlet case, but it can leave the domain in the Neumann case.

Sufficient conditions have now been specified to solve for Neumann
eigenfunctions.
Two Neumann Walls: We first illustrate the case of two Neu-

mann walls in the x direction and two Dirichlet walls along y:
∂Φx
∂x

����x=0,π
= 0 Φy

���y=0,π = 0. (13)

The values bx = cy = 0 select the trigonometric functions that sat-
isfy these boundaries, as well as Eqn. 11. The solution now becomes,

Φx (k) = ax cos(kxx)
(
cx cos(kyy) + dx sin(kyy)

)
Φy (k) = dy sin(kyy)

(
ay cos(kxx) + by sin(kxx)

)
,

(14)

and two of the constraints from Eqn. 10 become:
kxaxdx = 0 kyaydy = 0.

Setting dx = ay = 0 avoids a trivial solution and yields:
Φx (k) = axcx cos(kxx) cos(kyy)
Φy (k) = bydy sin(kyy) sin(kxx).

(15)

The last constraint, −kxaxcx + kybydy = 0, can be satisfied using
axcx = ky/ηk and bydy = kx/ηk, where the 1/ηk is added as a normal-
ization. The final eigenfunctions are then:

Φx (k) =
1
ηk

ky cos(kxx) cos(kyy)

Φy (k) =
1
ηk

kx sin(kxx) sin(kyy).
(16)

These eigenfunctions are clearly amenable to DCT and DST acceler-
ation, as they are all products of trigonometric functions. They are
visualized in Fig. 2. The eigenfunctions for Neumann walls along
they direction, as well as the case where all four walls are Neumann,
can be obtained using a similar process.
One Neumann Wall: If Neumann conditions are only needed

along one wall, Dirichlet conditions can be restored on the opposing

wall. For example, if the x boundary conditions from Eqn. 13 are
instead set to,

∂Φx
∂x

����x=π
= 0 Φx

���x=0 = 0, (17)

then the same eigenfunctions from Eqn. 26 can be used. However, a
half-period frequency shift is added so that kx is a non-negative half-
integer in lieu of an integer, i.e. kx ∈

(
Z+ − 1/2

) . This is illustrated
by the function sin((k − 1/2)x), where k is a positive integer. The
function is zero at x = 0, which satisfies the Dirichlet condition, and
its derivative, cos((k − 1/2)x), is zero at x = π , which satisfies the
Neumann condition.

4.3 Computational Considerations
The velocity reconstruction method from §4.1 is already quite fast,
but since r ≪ N 3, it is also possible to perform a prunedDCT. In gen-
eral, whenw is transformed into the 3D frequency representation for
ûx (k), the non-zero entries are localized to a cube with length 3√r on
each side, with one corner coincident with the zero-frequency, DC
component. In lieu of performing three transforms of size N 3 logN ,
we can use the knowledge that most of the coefficients are zero to
skip many of the 1D transforms. The transforms along the first two
dimensions can be pruned to 3√r

2
N logN and 3√rN 2 logN , and only

the last dimension requires the full N 3 logN . In practice, we found
that this easy modification yields a 30% acceleration.

A slight modification is needed when there is a single Neumann
boundary along a direction, because most FFT libraries do not sup-
port half-integer wave numbers. In this case, we double the resolu-
tion of the DST grid in the respective direction, and only keep the
odd wave numbered coefficients. This extra factor of two is very
modest compared to theO (rN 3) memory complexity of the original
Eigenfluids algorithm, so we found it acceptable.

5 STABLE EIGENFLUID DYNAMICS
With the basis functions in place, we will now describe the construc-
tion of the 3rd-order advection tensor C and the time integration
scheme. In particular, we will show that following the method of
De Witt et al. [2012] results in an unstable simulation, and that the
variational form from Liu et al. [2015] must be used instead. We
will also comment on the sparsity of this tensor, and show how to
perform the time integration using a symmetric solver.

5.1 Advection Tensor
The method of De Witt et al. [2012] computes each entry of the
advection tensor as C(д,h, i) = [∇ × (ϕh × Ψi)] · ϕд , where Ψi is a
velocity basis, andϕ∗ are vorticity bases. This formulation is effective
for Dirichlet bases because the projection onto the vorticity basis is
sparse, i.e., the cross product only produces a non-zero projection
onto a small number of ϕ basis functions.
We have found that this property does not always hold for Neu-

mann boundaries. For example, a single Neumann wall adds basis
functions containing a half-period frequency shift, and the ϕд func-
tion can contain this shift while the cross product [∇ × (ϕh × Ψi)]
does not. The phase mismatch will cause [∇ × (ϕh × Ψi)] to have
non-zero projections onto an infinite series of ϕд . The error intro-
duced by truncating the series will manifest as a blowup in energy

ACM Transactions on Graphics, Vol. 37, No. 4, Article 87. Publication date: August 2018.

87:6 •

that occurs regardless of the timestep size. Energy renormalization
[De Witt et al. 2012] can be used to coerce the simulation back to
stability, but the resulting motion is clearly non-physical.

In order to avoid blowups, the tensor must be have an energy con-
serving anti-symmetry, C(д,h, i) = −C(h,д, i). We found that even
a simple post-process that forced the advection tensor to have this
property significantly stabilized the simulation. However, Liu et al.
[2015] showed a more principled way of enforcing this condition:

C(д,h, i) =
∫
Ω
(∇ × Ψi) · (Ψд × Ψh)dΩ. (18)

By preferring to use this form, the anti-symmetry of the tensor is
preserved by construction, energy blowups are avoided, and no
ad-hoc post-processing of C is needed. Details on computing this
tensor in 2D are given in Appendix A.
Tensor Sparsity: Each entry in C has three associated wave

indices, which we will denote k = (kx ,ky ,kz), l = (lx , ly , lz), and
m = (mx ,my ,mz), and can be expanded into sine and cosine inte-
grals. As shown in §2.1 of supplementary material, with Dirichlet
boundaries, the following conditions determine the sparsity:

mx = lx + kx mx = lx − kx mx = kx − lx (19)
my = ly + ky my = ly − ky my = ky − ly (20)
mz = lz + kz mz = lz − kz mz = kz − lz . (21)

In order for an entry in C to be non-zero, one relation in each row
of Eqns. 19-21 must be satisfied. A single, fixed assignment of l and
k can thus only generate 27 values form that satisfy these relations.
Since there are r2 possible assignments for l and k, there are 27r2
possible non-zero entries, or O (r2) sparsity in C.

When the boundary conditions in one direction is switched from
Dirichlet to Neumann, one of the constraint rows in Eqns. 19-21
is dropped. For each fixed l and k, the number of possible valid
combinations relaxes from 33 = 27 to 32 3√r = 9 3√r . Over all r2 com-
binations of l and k, this then yields (9 3√r)r2, or O

(
r2+

1/3
)
sparsity

in C. This trend continues as the number of Neumann boundaries is
increased. For four Neumann walls, the sparsity becomesO

(
r2+

2/3
)
,

and when all six walls, the tensor becomes a dense O (r3). For odd
numbered walls, one Neumann boundary gives O

(
r2+

1/3
)
, three

gives O
(
r2+

2/3
)
, and five yields O

(
r3
)
.

The density of the Neumann advection tensor is initially counter-
intuitive from a physical perspective, because it suggests that two
low-frequency modes can combine to interact with an arbitrary
high-frequency mode. This is in contrast to Fourier or Dirichlet
modes, where two low-frequency modes can only scatter into a
mode that is at most double the pair’s maximumwavenumber.While
longer-range frequency interactions are now possible, the advection
coefficients are very nearly zero. The ability of low frequencies to
activate arbitrary high frequencies is in fact severely limited.
The sparsity can vary from quadratic to cubic, so storing C can

become a scaling limitation on the Eigenfluids algorithm. Compres-
sion using sparse schemes [An et al. 2008; Hasan et al. 2008] is a
direction for future work. However we will later show in §7 that the
simplest lossy scheme, i.e., discarding small entries, can reduce the
size of the tensor by an order of magnitude while still maintaining
the overall character of the flow. This scheme will be particularly

effective in the Neumann case, because as previously described,
most of its O (r3) entries are near-zero.

Reweighting the tensor: One advantage of the Eigenfluids for-
mulation is that energy cascades between different frequencies are
directly encoded by the advection tensor. Therefore, forward scat-
tering, which is usually characterized statistically over long time
scales [Frisch 1995], can be observed with much higher temporal
and spectral resolution, and even directly manipulated.
By reweighting the advection tensor, we observe that we can

achieve a variety of stable fluid dynamics that are not possible using
any other method. We state this modified advection tensor as:

C(д,h, i) = bдbhbi · C(д,h, i). (22)

We use a simple linear function bk = (1 + c |k|2) as our reweighting
strategy, but many other choices are possible. Here, c is a tuning
parameter that adjusts the speed of the energy cascade (c = 0 yields
the original tensor). Intuitively, weights larger than one amplify
scattering to specific frequencies, while weights smaller than one
slow the rate of energy transfer. Since the weighted tensor C is still
antisymmetric, C(д,h, i) = −C(h,д, i), the new tensor will preserve
energy. Different scattering behaviors will be shown in §7.

5.2 Implicit Time Integration
With our scalability improvements, we are able to perform simu-
lations with much larger rank than previously possible. As a con-
sequence, the stability of explicit timestepping becomes a concern.
Deriving a CFL-like condition for the maximum stable ∆t is not
straightforward, as the usual “speed of sound” argument [Bridson
2015] is difficult to apply in the spectral domain, and the non-linear
advection tensor interferes with spectral eigenanalysis approaches,
which are inherently linear [Trefethen 2000]. In lieu of a direct ex-
pression, we have found empirically that the maximum stable ∆t
decreases quadratically with the basis rank. For r = 1000 this is
already ∆t ≈ 10−6, so an implicit treatment that allows for larger
∆t is clearly needed.
We are again able to use machinery from Liu et al. [2015] in the

form of their implicit trapezoidal update,

wt+1 =
∆t

2 Ct+1wt+1 +
∆t

2 Ctwt +wt + f̂ , (23)

where Ct+1 = C ×3 wt+1 and Ct = C ×3 wt denote contractions
along the third mode of C. For brevity, we have written the equation
in its inviscid form here, but an additional eν∆tΛ term should be
multiplied on the right-hand side if viscosity is desired. While a
full Newton solve could be performed to reconcile the Ct+1 and
wt+1 terms, we show in Fig. 3 that a semi-implicit solve (i.e., a
single Newton iteration in the style of Baraff and Witkin [1998])
was sufficient to maintain stability and good energy behavior.

Symmetric Solvers: One drawback of implicit integration is
that the anti-symmetric C imposes anti-symmetry on its contrac-
tion Ct+1, and necessitates the use of a non-symmetric solver such
as BiCGSTAB. While these solvers can be effective, it is usually
preferable to use a symmetric solver such as PCG whose conver-
gence is both faster and better understood.

A classic method for applying a symmetric solver to an asymmet-
ric matrix A is to apply conjugate gradient to its normal form, ATA,

ACM Transactions on Graphics, Vol. 37, No. 4, Article 87. Publication date: August 2018.

Scalable Laplacian Eigenfluids • 87:7

Percentage of energy retained over time

Time steps

Pe
rc

en
ta

ge
 (%

) o
f e

ne
rg

y
re

la
ti

ve
 to

 i

ni
ti

al
 c

on
di

ti
on

s

Visc = 0
Visc = 0.0001
Visc = 0.0002

Fig. 3. Energy of the simulation in Fig. 5 over time, for multiple viscosities.
For the zero-viscosity regime, energy is stably preserved even when only a
single Newton iteration is used.

i.e., CGNR [Saad 2003]. The main caveat of CGNR is that the condi-
tion number of A is squared, which can make a badly-conditioned
matrix even worse. However, we have found that Eqn. 23 is suffi-
ciently well-conditioned that this caveat does not apply. We can
rewrite the system as:(

I −
∆t

2 Ct+1
)
wt+1 =

∆t

2 Ctwt +wt + f̂ . (24)

Dropping the t + 1 superscript from Ct+1 for brevity, forming the
normal matrix, and applying the identity C = −CT yields:(

I −
∆t

2 C
)T (

I −
∆t

2 C
)
= I +

∆t2

4 CTC. (25)

The matrix C and its condition number are squared, but since ∆t ≪
1, the squaring is offset by the ∆t 2/4 term. The resulting normal
matrix is very close to identity, and adding the viscosity term only
pushes it closer. When r = 8000, frame-rate timesteps of ∆t ≈ 1/30
require 3 to 4 CGNR iterations to converge to a tolerance of 10−10,
and even large timesteps of ∆t = 0.2 only need 6 iterations. The
convergence is sufficiently fast that preconditioning is unnecessary.

6 COMPARISON WITH SPECTRAL METHODS
Since our method is closely related to spectral methods [Canuto et al.
1988], we discuss and compare the approaches here. Specifically, we
compare our algorithm to the collocation methods from Dedalus
[Burns et al. 2017], a recent spectral library that has been success-
fully used to advance understanding in both general [Davidovits
and Fisch 2016] and computational [Vasil et al. 2016] physics.
Spectral collocation methods usually use Fourier bases to repre-

sent periodic boundaries, and either sine functions or Chebyshev
polynomials to implement non-periodic Dirichlet boundaries. Thus,
there are obvious similarities to our use of sine and cosine functions.
When Neumann conditions are desired, Chebyshev polynomials are
employed due to their non-periodicity. However, attempts to use
trigonometric functions to perform an expansion of the Neumann
boundary conditions suffer from the same problems with infinite
non-zero projections we encountered with the method of De Witt
et al. [2012] in §5.1. If Neumann conditions are desired in multiple

Fig. 4. Left: A spectral simulation using 60 × 60 basis functions in Dedalus.
The top and bottomwalls were set to Dirichlet velocity boundaries, while the
left and right were set to Neumann. We used the smallest possible viscosity
that did not destabilize the simulation. Middle: An equivalent 60 × 60
simulation using our method. We capture small-scale vortical features that
the spectral simulation cannot.Right: A reference spectral simulation using
240 × 240 basis functions in Dedalus, with ν = 2 × 10−5.

directions, Chebyshev polynomials must be used in multiple direc-
tions as well. However, this introduces additional issues, because the
derivatives of the polynomials become non-trivially coupled along
multiple modes (e.g., Dedalus does not even allow the use of Cheby-
shev along more than one direction). In our method, using multiple
Neumann conditions only requires a tweak to the trigonometric
transform and the use of a different advection tensor.

Furthermore, we can show that when Chebyshev polynomials are
used, the resulting system will not be energy-preserving. Spectral
collocation methods make extensive use of differentiation matrices
[Canuto et al. 2007], as they are employed to obtain spatial deriva-
tives at specific collocation points [Trefethen 2000]. While these
differentiation matrices are never constructed explicitly, we can
use them to determine the conservation properties of the under-
lying scheme. As shown in Canuto et al. [2007], in order for the
semi-discrete Navier-Stokes equations to be energy-preserving, the
differentiation matrix must be skew-symmetric. However, as we
show in the supplemental material, the differentiation matrix that
arises from Chebyshev polynomials does not fit this form.
In practice, this means that a viscosity term must be introduced

into the spectral simulation or it will become unstable. Qualitatively,
it also means that our Eigenfluid method will be able to capture
lower viscosity flows. We verify this hypothesis by comparing our
method to a 2D Dedalus simulation where both simulations use 60
basis functions along each axis (Fig. 4). The viscosity of the spectral
simulation was set to ν = 10−4; further decrease destabilized the
simulation. Our Eigenfluids simulation with ν = 2 × 10−5 clearly
captures non-trivial vortical structures which are not resolved in
spectral simulation with the same resolution. A higher resolution
spectral result with a more converged version of the same feature
is also shown in Fig. 4. Overall, compared to spectral collocation
methods, our method handles various boundary conditions more
easily and captures a wider variety of low viscosity flows.

7 RESULTS
We implemented our Scalable Laplacian Eigenfluids algorithm in
C++. The CGNR algorithm was implemented by modifying the CG
implementation in Eigen [Guennebaud et al. 2010] to include an
extra transposed matrix multiply. We used FFTW3 [Frigo and John-
son 2005] to perform DCT and DST. Multi-threading was enabled

ACM Transactions on Graphics, Vol. 37, No. 4, Article 87. Publication date: August 2018.

87:8 •

Grid Basis Running Time Total Memory Usage

size dimension on-the-fly cached DCT speedup speedup cached Ours memory
basis (OTF) basis (ours) vs. OTF vs. cached basis savings

1283 200 8.660 secs 1.65 secs 0.10 secs 87× 17× 10.2 GB 185 MB 55×
1000 44.10 secs 9.54 secs 0.10 secs 440× 95× 50.5 GB 223 MB 226×

2203 200 45.56 secs 17.2 secs 0.78 secs 58× 22× 52.0 GB 938 MB 55×
24000 6630 secs - 0.78 secs 8499× - 6.10 TB 26.0 GB 235×

Table 1. Running time and memory usage results of our DCT-based approach compared to caching a large matrix U of basis functions, or recomputing the
entries of U on-the-fly. Double precision floating point was used, and multithreading is enabled for all three methods. Advection tensor size is reported using
Dirichlet boundary conditions.

using OpenMP whenever possible, including during DCT and DST
computations. We used a collocated grid for our velocity fields be-
cause FFTW3 computes the transformation at the center of the grid
cell. Since there is no pressure projection performed in the spatial
domain, the null space arguments for MAC grids do not apply.

The implementation of Long and Reinhard [2009] used the semi-
Lagrangian advection from Zephyr [Kim 2013], but replaced the
pressure projection with the DCT-based approach. All density ad-
vection was performed using a MacCormack scheme [Selle et al.
2008]. Similar to De Witt et al. [2012], Treuille et al. [2006], and
Chern et al. [2016], explicit penalty forces are used to insert static
and dynamic obstacles into scenes. All our results were run on a
desktop with 96GB of memory and 12 cores running at 2.4 GHz.
Colliding smoke jets. Our simplest example contains two blocks

of smoke driven together by an initial impulse. As can be seen in
Fig. 5, visually interesting details continue to appear as we increase
the basis rank. The grid resolution is 2203. As shown in Table 1,
these scenes are infeasible with the original Eigenfluids algorithm.
Either 6.10 terabytes of memory would be needed to store the basis,
or 1.84 hours would be needed per frame to recompute the basis
on-the-fly. Instead, we compute the velocity reconstruction 8499×
faster than the on-the-fly approach, and use 235× less memory than
the cached basis approach. The timings all use the unpruned DCT.

We also compare ourmethod to Long and Reinhard [2009], as their
use of DCT more closely matches our approach than the original
Stam [1999] algorithm. Our results are clearly less viscous, as we
do not perform the smearing-prone pressure projection or semi-
Lagrangian advection. The complexity of the DCT-based projection
is the same as our velocity reconstruction and force projection. If
the pruned DCT from §4.3 is used, this stage of our method runs 30%
faster. In Fig. 5, Long and Reinhard [2009] takes 2.50 secs per frame,
while our method with 3000 basis functions takes 1.53 secs per frame.
Our method preserves more detail and runs slightly faster.
Paddle wheel. We show a scene containing a moving Neumann

obstacle in Fig. 1. This scene tests the scalability of our approach and
shows its ability to accommodate Neumann boundary conditions.
The scene contains two Neumann walls in the positive and negative
x directions, and the basis rank is varied from r = 100 to 12600. The
viscosity varies from 0.002 to zero, and smoke density is continually
added along the bottom of the domain. The smoke also dissipates
over time, so the entire box never becomes full. As shown in Fig. 1,
more detail appears as we increase the basis rank. The timings are

(a) Top to bottom: r = 200, r = 3000, and r = 24000 with Dirichlet boundaries.

(b) Results of the semi-Lagrangian / DCT method of Long and Reinhard [2009]

Fig. 5. Colliding smoke scene: On top, the results of our method. As basis
functions are added, more fine-scale detail emerges. On bottom, the results
of the Stam-like DCT method of Long and Reinhard [2009]. Our results are
clearly more inviscid.

shown in Table 3. For this scene, at the maximum rank of r = 12600,
each frame takes 6.6 secs.

Thin Dirichlet obstacles. We also test our algorithm using
static, Dirichlet obstacles. As observed by De Witt et al. [2012],

ACM Transactions on Graphics, Vol. 37, No. 4, Article 87. Publication date: August 2018.

Scalable Laplacian Eigenfluids • 87:9

Fig. 6. Larger bases resolve thinner obstacles, as shown in the Cylinders
scene. The basis rank from left to right is r = 200, r = 1000, and r = 7000.

the ability of the Eigenfluids algorithm to resolve obstacles is lim-
ited by the basis rank. Thus, as we add more bases, the fluid should
be able to resolve finer obstacles. We test this by placing many thin
cylinders into a scene, as shown in Fig. 6. We use a basis with two
Neumann walls along the positive and negative y directions and
vary the basis rank from r = 200 to 7000. The r = 200 basis com-
pletely fails to resolve the cylinders. When r is increased to 1000,
the smoke interacts with the obstacles, but some of the smoke is
pushed against the side of the box instead of flowing between the
cylinders. When r = 7000, the velocity field is able to resolve each
obstacle, so the smoke flows around them.

0	

10	

20	

30	

40	

50	

60	

70	

80	

0.00	 0.02	 0.04	 0.06	 0.08	 0.10	 0.12	 0.14	 0.16	

Pe
rc
en

t	(
%
)	o

f	t
ot
al
	te

ns
or
	e
nt
rie

s	

Rela2ve	Tensor	Entry	Magnitude	

Distribu2on	of	Tensor	Entry	Magnitudes	

Fig. 7. Distribution of magnitudes in the advection tensor. Most of the
entries have values that are near-zero, and can be discarded without signifi-
cantly influencing the overall fluid motion.

Precomputing and compressing the tensor.While it should
be possible to directly address the entries that satisfy Eqns. 19-21,
we instead used the direct, O (r3) method for precomputing the
advection tensor. The Dirichlet tensor for r = 24000 took 32 hours
4 minutes to precompute. When r = 14000, it took 5 hours 30
minutes. The two-wall Neumann tensor with r = 12600 took 6
hours 3 minutes to precompute. The advection tensor only depends
on the wall boundaries, so it can be re-used across scenes.

As we have removed the storage issues surrounding the O (rN 3)
basis matrix, the advection tensor becomes the main memory bot-
tleneck. When r = 8000, a Dirichlet tensor has O (r2) sparsity, and
takes up 2.5 GB of memory. A two-Neumann wall case hasO (r2+

1/3)

sparsity, and consumes 25.7 GB of memory. However, even the sim-
plest lossy compression scheme of dropping small entries is highly
effective. As shown in Fig. 8, results that retain the lively character
of Eigenfluids flows can be obtained even when 92% of the tensor
entries have been dropped. As shown in Table 2, the time needed
to compute the mode-3 product (×3) also decreases as entries are
discarded. For flows that are dominated by external forces, even
more entries can be dropped. More principled compression methods
[An et al. 2008; Hasan et al. 2008] are a direction for future research.

% of entries discarded 0 % 60 % 80 % 90%
Tensor size 11 GB 4.4 GB 2.2 GB 1.1 GB

Contraction time 0.89s 0.45s 0.43s 0.22s
Table 2. Contraction timings for compressed tensors. As entries are dis-
carded, the contraction time predictably decreases. Even after 10× lossy
compression, much of the overall fluid motion remains (Fig. 8).

Fig. 8. From left to right, 0%, 92%, 100% of the smallest tensor entries are
discarded in an r = 7000 simulation. At 100%, no energy is transferred
between basis functions, which creates a static velocity field.

Real-time interaction. Evenwith a large basis rank, ourmethod
is fast enough to run interactively. Fig. 9 shows an interactive simu-
lation with r = 1000 and two Neumann walls. The advection tensor
is compressed by dropping 80% of the smallest entries, and the grid
resolution is 120 × 60 × 60. The example runs at 13 FPS.

Directable forward scattering. As described in §5.1, we can
reweight the advection tensor to introduce directability into the
phenomenon of forward scattering. In Fig. 10, we show the results
of different forward scattering intensities using a various settings
for c in the bi function from Eqn. 22. When scattering is amplified,
details emerge at higher frequencies much more quickly. In Fig. 11,
we show that when a negative is introduced into the reweighting
function, flows emerge that undergo ghostly reversals. The detailed
motion can be viewed in the video.

8 DISCUSSION AND FUTURE WORK
We have described a version of the Eigenfluids algorithm that re-
moves the memory limitations imposed by basis storage, generalizes
to Neumann boundary conditions, and allows the use of symmet-
ric solvers. We are able to improve the scalability of the original
algorithm by over two orders of magnitude.
Since Eigenfluids can simulate totally inviscid flows, its energy

characteristics can be visually distinct from more established meth-
ods. Particularly when the viscosity is low, the algorithm can exhibit

ACM Transactions on Graphics, Vol. 37, No. 4, Article 87. Publication date: August 2018.

87:10 •

Scene Grid Boundary Basis Tensor Linear Solver DCT/DST Density TotalResolution condition dimension Contraction Advection
Paddle Wheel† 400 × 200 × 200 two Neumann 12600 4.2 secs 0.69 secs 1.2 secs 0.46 secs 6.6 secs

Colliding Smoke 220 × 220 × 220 two Neumann 7000 0.89 secs 0.42 secs 0.78 secs 0.48 secs 2.6 secs
six Dirichlet 24000 8.9 secs 3.0 secs 0.78 secs 0.48 secs 13 secs

Cylinders 266 × 200 × 200 two Neumann 7000 0.92 secs 0.39 secs 0.85 secs 0.25 secs 2.3 secs
Interactive 120 × 60 × 60 two Neumann 1000 0.0070 secs 0.0050 secs 0.044 secs 0.020 secs 0.076 secs

Table 3. Timing breakdown of our algorithm across all the different examples. The tensor † uses single precision floating point, and the rest use double.

Fig. 9. Interactive example, with r = 1000 basis functions and two Neu-
mann walls.

motions that can appear foreign to practitioners. While energy is
conserved, its cascade is capped at a highest frequency. The energy
dynamics of this case can be seen in the supplemental video, where
in the totally inviscid regime, energy tends to spread evenly across
the entire spectrum. The fact that we are able to capture these flows
enables a look-development workflow where a user can start in
the inviscid regime and gradually increases the viscosity until the
desired look is achieved (see, e.g., Mullen et al. [2009])
At this point, a new memory bottleneck appears in the form of

advection tensor storage. The most immediate direction for future
work is to reduce the memory footprint of this tensor. This can be
accomplished through brute-force compression methods [Hasan
et al. 2008; Jones et al. 2016], or by discovering compact new struc-
tures in the tensor, such as Kronecker product formulations [Golub
and Van Loan 2012].
The Eigenfluids method shares many similarities with spectral

methods, so treating our results as a fast transform for a single
element would allow the advection tensor to be re-used across
multiple tiled domains. Mixed boundary conditions could then be
achieved by varying the conditions across these tiles. Coupling
methods [Wicke et al. 2009] still need to devised for such elements.

We have not yet explored the extension of Eigenfluids to include
liquid surfaces. Although Long and Reinhard [2009] showed some
preliminary results, the ability for the basis functions to resolve the
velocity discontinuity across the interface is likely to be the limiting
factor. In this respect, the pseudo-spectral approach of Heo and Ko
[2010] offers interesting possibilities. For slip, perfectly-matched
layer, or prescribed boundary conditions, additional constraints
need to be considered when selecting basis functions. It remains to

be seen if closed-form, FFT-friendly solutions continue to exist in
the presence of these constraints.
Finally, our simulations are fast and memory-efficient because

the simulation domain is limited to a rectangular box. This allows us
to use DCT and DST libraries directly, but these operations cannot
be directly applied to the unstructured tetrahedral meshes shown
in other work [De Witt et al. 2012; Liu et al. 2015]. New transform
methods will need to be devised before these irregular domains can
achieve the same level of scalability. Wavelets and their associated
transforms seem like a promising direction, as they would also allow
degrees of freedom to be added to the regions that show the most
spatial complexity.

ACKNOWLEDGEMENTS
TK would like to thank Aaron Demby-Jones, Fernando de Goes and
Doug James for early discussions of this work. This work was sup-
ported by NSF CAREER award IIS-1253948, as well as IIS-1321168
and IIS-1619376. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation. We acknowledge support from the Center for Scientific
Computing from the CNSI, MRL: an NSF MRSEC (DMR-1720256).

A COMPUTING THE ADVECTION TENSOR

A.1 2D Dirichlet Basis
First we will show how to compute the advection tensor for 2D
Dirichlet basis. Assume the simulation domain is defined as Ω =
[0,π]2. Each entry in advection tensor C has three associated wave
indices, we will denote them as k = (kx ,ky), l = (lx , ly), and
m = (mx ,my). Basis functions with corresponding wave indices
will be indexed with unbolded letters, i.e. Ψk = Ψ(k),Ψl = Ψ(l),
Ψm = Ψ(m). The normalized 2D Dirichlet basis functions (Ψ(k) =
{Φx (k),Φy (k)}) are:

Φx (k) = −
2
π

ky

ηk
sin(kxx) cos(kyy)

Φy (k) =
2
π

kx
ηk

cos(kxx) sin(kyy)
(26)

Where ηk =
√
k2x + k

2
y , and Ψ(l) and Ψ(m) have the same form as

above but with k replaced with l and m. We can compute ∇ × Ψm
as:

∇ × Ψm = −
2
π
ηm sin(mxx) sin(myy) (27)

ACM Transactions on Graphics, Vol. 37, No. 4, Article 87. Publication date: August 2018.

Scalable Laplacian Eigenfluids • 87:11

Fig. 10. We introduce a directability parameter c that reweights the advection tensor according to Eqn. 22 and uses the function bk = (1 + c |k |2). Each image
in the sequence shows the same simulation timestep, but with a different setting for c . From left to right, the settings are c = 0 (i.e. the original, default tensor),
c = 0.0003, c = 0.0005, and c = 0.0017. As c increases, energy cascades rapidly into high-frequency modes, and creates more turbulent flows.

Fig. 11. Using different tensor reweighting schemes, e.g. bk = −(1 + c |k |2),
a wider variety of flows are observed. Above, reweighted versions of the
same simulation frame as Fig. 10 are shown.

The term Ψk × Ψl is equal to:

Ψk × Ψl = −
1

π 2ηlηk
lxky (sin((kx + lx)x) + sin((kx − lx)x))

(sin((ky + ly)y) − sin((ky − ly)y))+
1

π 2ηlηk
lykx (sin((kx + lx)x) − sin((kx − lx)x))

(sin((ky + ly)y) + sin((ky − ly)y))

(28)

We then have

C(k, l ,m) =
2ηm

π 3ηlηk
[

lxky

∫ π

0
sin(mxx) (sin((kx + lx)x) + sin((kx − lx)x))dx∫ π

0
sin(myy) (sin((ky + ly)y) − sin((ky − ly)y))dy−

lykx

∫ π

0
sin(mxx) (sin((kx + lx)x) − sin((kx − lx)x))dx∫ π

0
sin(myy) (sin((ky + ly)y) + sin((ky − ly)y))dy]

(29)

where the integral

∫ π

0
sin(mxx) (sin((kx + lx)x)dx =

1
2

∫ π

0
cos((mx − kx − lx)x) − cos((mx + kx + lx)x)dx

(30)

is only non-zero whenmx = kx + lx . Similarly,∫ π
0 sin(mxx) (sin((kx −lx)x)dx is non-zero only whenmx = kx −lx
ormx = lx − kx . The same constraints can be derived formy ,ky
and ly . These integrals will determine the density of the advection
tensor. Finally, as an example, whenmx = kx + lx andmy = ky + ly ,
the tensor entry becomes C(k, l ,m) =

ηm (lxky−lykx)
2πηlηk

A.2 2D Neumann Basis
Next we show how to compute the advection tensor for a 2D Neu-
mann basis. For the basis with two Neumann walls for Φx at x = 0
and x = π , the normalized basis is:

Φx (k) =
2
π

ky

ηk
cos(kxx) cos(kyy)

Φy (k) =
2
π

kx
ηk

sin(kxx) sin(kyy),
(31)

We can compute ∇ × Ψm as

∇ × Ψm =
2
π
ηm cos(mxx) sin(myy) (32)

The term Ψk × Ψl equals:

Ψk × Ψl = −
1

π 2ηlηk
lykx (sin((kx + lx)x) + sin((kx − lx)x))

(sin((ky + ly)y) + sin((ky − ly)y))+
1

π 2ηlηk
lxky (sin((kx + lx)x) − sin((kx − lx)x))

(sin((ky + ly)y) − sin((ky − ly)y))

ACM Transactions on Graphics, Vol. 37, No. 4, Article 87. Publication date: August 2018.

87:12 •

We then have

C(k, l ,m) =
2ηm

π 3ηlηk
[

− lykx

∫ π

0
cos(mxx) (sin((kx + lx)x) + sin((kx − lx)x))dx∫ π

0
sin(myy) (sin((ky + ly)y) + sin((ky − ly)y))dy+

lxky

∫ π

0
cos(mxx) (sin((kx + lx)x) − sin((kx − lx)x))dx∫ π

0
sin(myy) (sin((ky + ly)y) − sin((ky − ly)y))dy]

(33)

The major difference between equation 33 and equation 29 is that
the integrand along x direction in equation 33 is the product of
cosine and sine functions. But the integrand along the y direction
is still the product of sine and sine functions. Since the integral of
sine functions over [0,π] is non-zero for odd wavenumbers, the
only necessary condition for equation 33 to be non-zero ismy =

ky + ly ,my = ky − ly ormy = ly − ky . Thus, the Neumann basis
tensor will be denser than the Dirichlet basis tensor.

REFERENCES
Steven S. An, Theodore Kim, and Doug L. James. 2008. Optimizing Cubature for Efficient

Integration of Subspace Deformations. ACM Trans. Graph. 27, 5, Article 165 (Dec.
2008), 10 pages.

Alexis Angelidis. 2017. Personal Communication. (2017).
David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings

of SIGGRAPH. 43–54.
John P Boyd. 2001. Chebyshev and Fourier spectral methods. Dover Publications.
Robert Bridson. 2015. Fluid simulation for computer graphics. CRC Press.
Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-time Smoke Animation

with Vortex Sheet Meshes. InACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 87–95.

K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, B. P. Brown, and E. Quataert. 2017.
Dedalus project. http://dedalus-project.org. (2017).

CG Canuto, MY Hussaini, A Quarteroni, and TA Zang. 2007. Spectral Methods: Evolution
to Complex Geometries and Applications to Fluid Dynamics. Springer.

Claudio Canuto, M Yousuff Hussaini, Alfio Quarteroni, and TA Zang. 1988. Spectral
methods in fluid dynamics. Springer.

Albert Chern, Felix Knöppel, Ulrich Pinkall, Peter Schröder, and Steffen Weissmann.
2016. Schrödinger’s Smoke. ACM Trans. Graph. 35, 4, Article 77 (July 2016), 13 pages.

Seth Davidovits and Nathaniel J Fisch. 2016. Sudden viscous dissipation of compressing
turbulence. Physical Review Letters 116, 10 (2016).

Tyler De Witt, Christian Lessig, and Eugene Fiume. 2012. Fluid Simulation Using
Laplacian Eigenfunctions. ACM Trans. Graph. 31, 1, Article 10 (2012), 11 pages.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual Simulation of Smoke.
In Proceedings of SIGGRAPH. 15–22.

Florian Ferstl, Rüdiger Westermann, and Christian Dick. 2014. Large-scale liquid
simulation on adaptive hexahedral grids. IEEE Transactions on Visualization and
Computer Graphics 20, 10 (2014), 1405–1417.

Matteo Frigo and Steven G. Johnson. 2005. The Design and Implementation of FFTW3.
Proc. IEEE 93, 2 (2005), 216–231. Special issue on “Program Generation, Optimization,
and Platform Adaptation”.

Uriel Frisch. 1995. Turbulence: The Legacy of AN Kolmogorov. Cambridge University
Press.

Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A
Polynomial Particle-in-cell Method. ACM Trans. Graph. 36, 6, Article 222 (Nov.
2017), 12 pages.

Gene H Golub and Charles F Van Loan. 2012. Matrix computations. Vol. 3. JHU Press.
David Gottlieb and Steven A Orszag. 1977. Numerical analysis of spectral methods:

theory and applications. SIAM.
Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org. (2010).
Mohit Gupta and Srinivasa G. Narasimhan. 2007. Legendre Fluids: A Unified Framework

for Analytic Reduced Space Modeling and Rendering of Participating Media. In
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 17–25.

Milos Hasan, Edgar Velazquez-Armendariz, Fabio Pellacini, and Kavita Bala. 2008.
Tensor Clustering for Rendering Many-Light Animations. Computer Graphics Forum
27, 4 (2008), 1105–1114.

Ronald D. Henderson. 2012. Scalable Fluid Simulation in Linear Time on SharedMemory
Multiprocessors. In Proceedings of the Digital Production Symposium (DigiPro ’12).
43–52.

Nambin Heo and Hyeong-Seok Ko. 2010. Detail-preserving fully-Eulerian Interface
Tracking Framework. ACM Trans. Graph. 29, 6, Article 176 (Dec. 2010), 8 pages.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The Affine Particle-in-cell Method. ACM Trans. Graph. 34, 4, Article 51 (July
2015), 10 pages.

Aaron Demby Jones, Pradeep Sen, and Theodore Kim. 2016. Compressing Fluid Sub-
spaces. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 77–84.

Theodore Kim. 2013. Zephyr. http://www.tkim.graphics/RESIM/source.html. (2013).
Theodore Kim and John Delaney. 2013. Subspace Fluid Re-simulation. ACM Trans.

Graph. 32, 4, Article 62 (2013), 9 pages.
Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet Turbulence

for Fluid Simulation. ACM Trans. Graph. 27, 3, Article 50 (Aug. 2008), 6 pages.
Cornelius Lanczos. 1938. Trigonometric interpolation of empirical and analytical

functions. J. Math Phys. 17, 1-4 (1938), 123–199.
Beibei Liu, Gemma Mason, Julian Hodgson, Yiying Tong, and Mathieu Desbrun. 2015.

Model-reduced Variational Fluid Simulation. ACM Trans. Graph. 34, 6, Article 244
(2015), 12 pages.

Benjamin Long and Erik Reinhard. 2009. Real-time Fluid Simulation Using Discrete
Sine/Cosine Transforms. In Symposium on Interactive 3D Graphics and Games. 99–
106.

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating Water and Smoke
with an Octree Data Structure. ACM Trans. Graph. 23, 3 (Aug. 2004), 457–462.

A. McAdams, E. Sifakis, and J. Teran. 2010. A Parallel Multigrid Poisson Solver for
Fluids Simulation on Large Grids. In ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. 65–74.

Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Desbrun.
2009. Energy-preserving Integrators for Fluid Animation. ACM Trans. Graph. 28, 3,
Article 38 (2009), 8 pages.

Rahul Narain, Jason Sewall, Mark Carlson, and Ming C. Lin. 2008. Fast Animation of
Turbulence Using Energy Transport and Procedural Synthesis. ACM Trans. Graph.
27, 5, Article 166 (Dec. 2008), 8 pages.

Steven A Orszag. 1969. Numerical methods for the simulation of turbulence. The
Physics of Fluids 12, 12 (1969), II–250.

Steven A Orszag. 1971. Accurate solution of the Orr–Sommerfeld stability equation.
Journal of Fluid Mechanics 50, 4 (1971), 689–703.

Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian Vortex Sheets for
Animating Fluids. ACM Trans. Graph. 31, 4, Article 112 (July 2012), 8 pages.

Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.
H. Schechter and R. Bridson. 2008. Evolving Sub-grid Turbulence for Smoke Animation.

In ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 1–7.
Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008.

An unconditionally stable MacCormack method. Journal of Scientific Computing 35,
2 (2008), 350–371.

Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A Vortex Particle Method for
Smoke, Water and Explosions. ACM Trans. Graph. 24, 3 (July 2005), 910–914.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A Sparse Paged Grid Structure Applied to Adaptive Smoke Simulation. ACM Trans.
Graph. 33, 6, Article 205 (Nov. 2014), 12 pages.

Jos Stam. 1999. Stable Fluids. In Proceedings of SIGGRAPH. 121–128.
Jos Stam. 2002. A Simple Fluid Solver Based on the FFT. J. Graph. Tools 6, 2 (Sept. 2002),

43–52.
Matt Stanton, Yu Sheng, Martin Wicke, Federico Perazzi, Amos Yuen, Srinivasa

Narasimhan, and Adrien Treuille. 2013. Non-polynomial Galerkin Projection on
Deforming Meshes. ACM Trans. Graph. 32, 4, Article 86 (July 2013), 14 pages.

Lloyd N Trefethen. 2000. Spectral methods in MATLAB. SIAM.
Adrien Treuille, Andrew Lewis, and Zoran Popović. 2006. Model Reduction for Real-time

Fluids. ACM Trans. Graph. 25, 3 (July 2006), 826–834.
Geoffrey M. Vasil, Keaton J. Burns, Daniel Lecoanet, Sheehan Olver, Benjamin P. Brown,

and Jeffrey S. Oishi. 2016. Tensor calculus in polar coordinates using Jacobi polyno-
mials. J. Comput. Phys. 325 (2016), 53 – 73.

Steffen Weissmann and Ulrich Pinkall. 2010. Filament-based Smoke with Vortex Shed-
ding and Variational Reconnection. ACM Trans. Graph. 29, 4, Article 115 (July 2010),
12 pages.

Martin Wicke, Matt Stanton, and Adrien Treuille. 2009. Modular Bases for Fluid
Dynamics. ACM Trans. Graph. 28, 3, Article 39 (July 2009), 8 pages.

Xinxin Zhang, Robert Bridson, and Chen Greif. 2015. Restoring the Missing Vorticity in
Advection-projection Fluid Solvers. ACM Trans. Graph. 34, 4, Article 52 (July 2015),
8 pages.

Yongning Zhu and Robert Bridson. 2005. Animating Sand As a Fluid. ACM Trans.
Graph. 24, 3 (July 2005), 965–972.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 87. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 The Method of Laplacian Eigenfunctions
	4 Fast, General, Analytic Basis Functions
	4.1 Fast Projection and Reconstruction
	4.2 Enabling Neumann Boundaries
	4.3 Computational Considerations

	5 Stable Eigenfluid Dynamics
	5.1 Advection Tensor
	5.2 Implicit Time Integration

	6 Comparison with spectral methods
	7 Results
	8 Discussion and Future Work
	A Computing the advection tensor
	A.1 2D Dirichlet Basis
	A.2 2D Neumann Basis

	References

