
Dispersion Kernels for Water Wave Simulation

José A. Canabal1 David Miraut1 Nils Thuerey2 Theodore Kim3,4 Javier Portilla5

Miguel A. Otaduy1

1URJC Madrid 2Technical University of Munich 3Pixar Animation Studios
4Universiy of California, Santa Barbara 5Instituto de Optica, CSIC

Figure 1: Rain on the pond. Our wave simulation method captures the gravity waves present in the wakes produced by the paper birds, as
well as the capillary waves produced by rain drops, all with correct scale-dependent velocities. The waves reflect on all the objects in the
scene, both static and dynamic. The domain is 4 meters wide, and is simulated on a 1024× 1024 grid, at just 1.6 sec. per frame.

Abstract

We propose a method to simulate the rich, scale-dependent dynam-
ics of water waves. Our method preserves the dispersion proper-
ties of real waves, yet it supports interactions with obstacles and is
computationally efficient. Fundamentally, it computes wave accel-
erations by way of applying a dispersion kernel as a spatially variant
filter, which we are able to compute efficiently using two core tech-
nical contributions. First, we design novel, accurate, and compact
pyramid kernels which compensate for low-frequency truncation
errors. Second, we design a shadowed convolution operation that
efficiently accounts for obstacle interactions by modulating the ap-
plication of the dispersion kernel. We demonstrate a wide range of
behaviors, which include capillary waves, gravity waves, and inter-
actions with static and dynamic obstacles, all from within a single
simulation.

Keywords: fluid simulation, water waves

Concepts: •Computing methodologies→ Physical simulation;

1 Introduction

The dynamics of water waves obey a complex balance between the
major forces acting on them, notably internal pressure, gravity, and
surface tension. The Airy model [Airy 1849] describes this balance
as a function of the depth of the liquid and the spatial frequency
of the wave (a.k.a. wave number), and succeeds in capturing the
characteristic dispersion of real-world waves.

Spectral approaches have been very successful in efficiently syn-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SA ’16 Technical Papers,, December 05-08, 2016, Macao
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2982415

thesizing height field waves with correct dispersion [Tessendorf
2004b]. However, handling obstacle boundaries in the frequency
domain is computationally expensive, and quickly renders any ap-
proach in this direction impractical. Thus, users have to resort to lo-
calized three-dimensional simulations [Nielsen and Bridson 2011],
precomputations [Jeschke and Wojtan 2015], or height field ap-
proaches with spatial filtering techniques [Kass and Miller 1990;
Tessendorf 2008]. While the latter methods are typically fast, they
only roughly approximate or even neglect dispersion effects.

This is the gap we aim to fill: our method allows for efficient, height
field wave simulations in the spatial domain. The simulated waves
correctly obey the Airy dispersion model, and our method can cap-
ture the nonlinearities of wave reflections at static and dynamic
boundaries. Additionally, our method is fast enough to allow for
interactive simulations on grids of moderate size.

In contrast to spectral approaches, we propose a spatial implemen-
tation of the Airy dispersion model. As shown in Section 3, this is
done through convolution of the height field with a dispersion ker-
nel. This choice is motivated by the fact that obstacle handling can
then be introduced by spatially modulating the dispersion kernel.

Unfortunately, the spatial support of the naı̈ve dispersion kernel is
large, and this makes the approach a priori impractical. More-
over, we have observed that standard multiresolution approaches,
which could enable a more compact kernel on each resolution, suf-
fer unacceptable accuracy and robustness limitations. In Section 4,
we introduce a novel method to design multiresolution kernels that
are compact yet accurate, based on low-frequency compensation of
truncation errors. Our strategy yields compact multiresolution ker-
nels with imperceptible errors on wave dispersion.

Using the dispersion kernel as a reference, we incorporate reflecting
boundary conditions with static and dynamic obstacles by modulat-
ing the kernel on areas occluded by obstacles. In Section 5, we
introduce a shadowed convolution operation that approximates re-
flecting boundary conditions in a way that balances accuracy and
computational cost. We propose a massively parallel algorithm for
the computation of obstacle shadow masks, which introduces only
a small overhead on the regular convolution operation.

We show results with wave dynamics at different scales, from cap-
illary to gravity waves (see the pond scene in Fig. 1), all simulated

http://dx.doi.org/10.1145/2980179.2982415


our method 3D level set iWave

Figure 2: A 10-meter-wide and 1-meter-deep domain is perturbed, and we compare the resulting waves with our method (left, on a 256×256
2D grid), a 3D level set simulation [Thuerey and Pfaff 2016] (middle, on a 256 × 256 × 128 3D grid), and the iWave method [Tessendorf
2004a] (right, also on a 256 × 256 2D grid). All images show the simulation after 6 seconds. The difference in wavefront propagation
velocity between our method and the level set solution is only 4.1%. However, our method runs at 30 fps and the level set solution runs
at 20 seconds/frame (although it could be further optimized). Moreover, due to numerical dissipation, the level set solution misses the
high-frequency waves, which are in turn captured with our method. iWave considerably underestimates the propagation velocity.

under one method. Waves reflect both on static and dynamic ob-
jects, producing rich interactions. On grids of up to 1024 × 1024
cells, our simulations run at 0.6 fps for the small-scale pond scene,
and 5 fps for the large-scale canal scene in Fig. 13 (for 1/60 sec.
frames).

We have also validated that our method produces wave dispersion
behavior that is extremely similar to a 3D level set simulation, but
with even higher frequency content, and at just a small fraction of
the cost, as shown in Fig. 2.

2 Related Work

The Navier-Stokes equations are the most commonly used physical
model for fluids. In computer graphics, Foster and Metaxas [1996]
were the first to solve them in three dimensions for animation pur-
poses. The stable fluids algorithm, introduced by Stam [1999], is
widely used in different forms, and has seen numerous improve-
ments over the years, such as surface tracking for liquids [Foster
and Fedkiw 2001], the ghost-fluid method for improved interface
motions [Enright et al. 2003], and guiding techniques for artistic
control [Nielsen and Bridson 2011]. Thorough overviews of the
different algorithms for grid-based and particle-based methods can
be found in corresponding survey texts [Bridson 2015; Ihmsen et al.
2014]. While a three-dimensional solver with surface tension forces
could theoretically resolve the correct motion of gravity and capil-
lary waves, the volumetric representation and correspondingly high
computational cost make this approach infeasible in most practical
cases.

Surface waves that do not break are well represented by height
fields, which typically significantly reduce the computational cost
due to their two-dimensional nature. The simplest model here is
the linear wave equation, which is commonly used for graphical
effects [Kass and Miller 1990]. It can be solved very efficiently,
but leads to a single propagation speed for all waves. Closely re-
lated are shallow-water models [Wang et al. 2007; Chentanez and
Müller 2010], which typically include transport and ground effects.
To circumvent the single speed approximation, methods such as
iWave [Tessendorf 2004a], and Bi-Laplacian surface energy formu-
lations [Yu et al. 2012] were introduced. While these methods can
compute a sub-class of dispersive motions, the dispersion is fixed,
and cannot yield the correct physical range of wave motions. The
iWave kernel was designed to be scale-independent. In essence,
kernel values are independent of spatial resolution, and while the
method produces dispersion within the range of wave numbers rep-
resented by the simulation, the dispersion law does not incorporate
the scale and resolution of the domain. As shown in Fig. 2, we
have observed that the propagation speed with iWave is often con-

siderably lower than expected. A common theme of the height field
methods mentioned so far is that they work in the spatial domain,
and can flexibly handle arbitrary obstacle geometries. Similarly,
wave particles [Yuksel et al. 2007; Cords 2008] and SPH-based
shallow water particles [Solenthaler et al. 2011] represent waves
with Lagrangian particles that can be updated very efficiently.

Due to their efficiency, height field methods are attractive in com-
bination with 3D solvers, e.g., to capture detailed wave effects for
splashing liquids [Patel et al. 2009], capillary waves with droplet
interactions [Thürey et al. 2010], or surface turbulence [Kim et al.
2013; Mercier et al. 2015]. While it is an interesting direction
to combine 2D and 3D methods, we will leave such coupled ap-
proaches for future work, and focus on 2D simulations in the fol-
lowing.

In contrast to the methods above, it can be advantageous to sim-
ulate waves in the frequency domain. The spectral approach by
Tessendorf [Tessendorf 2004b; Darles et al. 2011] is widely used to
efficiently simulate large-scale ocean waves. Here, the frequency
representation allows for a fine control of the wave spectrum and
its motion. The large number of movies employing this tech-
nique highlight the importance of surface waves for visual effects
[Thacker 2010]. While Nielsen et al. [2013] proposed a method to
synthesize given shapes with waves for artist control, wave interac-
tions with obstacles are typically very difficult to incorporate into
spectral solvers. This motivates our choice to develop a method that
performs spatial convolutions, so that waves in arbitrary, chang-
ing geometries can be simulated. A different approach for pre-
computing the wave propagation with complex boundaries was re-
cently developed [Jeschke and Wojtan 2015]. While this algorithm
allows for efficient waves with dispersion effects, it requires costly
precomputations whenever the geometry of boundaries changes.

Other works have attempted some sort of spatial solution of dis-
persive waves before ours. Loviscach [2002] derived a convolu-
tion kernel that models the propagation of waves in time and space.
This kernel occupies a priori the complete domain, and Loviscach
designed a combination of spatial and frequency truncation to par-
tially limit the computational cost. In addition to truncation errors
that we will later on demonstrate, this additionally required a modi-
fied dispersion relationship, further distorting the correct wave mo-
tions. Ottosson [2011] started instead from the same dispersion
kernel as we do, which computes wave accelerations by way of a
convolution operation. To reduce the cost of the complete-domain
kernel, he built a pyramid of kernels for different bands, and ap-
proximated each level of the pyramid using a sum of separable
Gaussian filters. Although very efficient, the approach suffers from
notable errors that can significantly affect wave motion. In addition



Figure 3: Wave dynamics largely depend on their scale. From left to right, three examples of water wave evolution after a central per-
turbation: (i) A 0.5-meter-wide, 0.2-meter-deep domain, with 1-mm resolution, 0.6 seconds after the perturbation; (ii) a 5-meter-wide,
1-meter-deep domain, with 10-mm resolution, after 3.5 seconds; (iii) A 50-meter-wide, 10-meter-deep domain, with 100-mm resolution, after
11 seconds.

to the severe truncation errors, a central limitation of the works of
Loviscach and Ottosson is that neither of them handles wave reflec-
tions at obstacles. This means that, in practice, these approaches do
not leverage the central advantage of spatial representations, while
suffering an increased error in the wave propagation.

3 Wave Dispersion Kernel

In this section, we introduce relevant notation, we recall the disper-
sion relation under Airy wave theory, and we describe the compu-
tation of wave acceleration as a convolution operation with a dis-
persion kernel.

Let us define a generic wave through its frequency decomposition.
For every position x ∈ IR2 and time t, the height of the wave may
be expressed in general terms as:

h(x, t) =

∫
IR2

a(k) ei(kT x−ω(k) t+φ(k))dk, (1)

where k is the wave vector of each frequency component, k = ‖k‖
is its wave number, a(k) and φ(k) are the amplitude and phase of
each frequency component, and ω(k) is its angular velocity.

Airy wave theory defines a linear model for the propagation
of waves on the surface of a homogeneous fluid with uniform
depth [Airy 1849; Dean and Dalrymple 1991; Lamb 1994]. The
dispersion relation defines the propagation velocity corresponding
to each wave number as:

c =

√(
g

k
+
σ

ρ
k

)
tanh(k d), (2)

where g is the gravity acceleration, ρ and σ are, respectively, the
density and surface tension of the fluid, and d is the fluid depth.
From the dispersion relation, we can derive that long waves (i.e.,
low wave number) are dominated by gravity (i.e., gravity waves).
They propagate faster on deeper water and as wave length grows.
Short waves (i.e., high wave number) are dominated by surface ten-
sion (i.e., capillary waves) and they travel faster as wave length
decreases. Fig. 3 shows wave behaviors at three different scales. In
the wakes shown in Fig. 1, wave fronts are dispersed into fast short
capillary waves and slow longer waves.

In the remainder of the document, we drop the explicit time de-
pendency of the wave height field. In addition, we denote with
small letters functions defined in the spatial domain, e.g., h(x),
and with capital letters functions defined in frequency domain, e.g.,
H(k) = F(h(x)), where F represents the Fourier transform.

The wave equation allows the computation of wave acceleration ḧ
as a function of wave height:

ḧ(x) = c2(k)∇2h(x). (3)

However, this equation is not of much practical use. The dispersion
relation (2) defines for c(k) a dependency w.r.t. wave number, but
h(x) is expressed in the spatial domain, without an explicit spectral
decomposition. As a result, it is not possible to apply the appropri-
ate propagation velocity to each wave number separately.

Transforming the equation to the frequency domain, through the
application of the Fourier transform, we obtain instead a practical
model:

Ḧ(k) = −k2 c2(k)H(k) = F (k)H(k). (4)

The Laplacian turns into a pointwise operation in frequency do-
main, thus removing the troublesome mix of spatial and frequency
dependencies in the wave equation (3). As a result, each frequency
component of the wave can be evolved in time independently, and
its acceleration is given by the product of its height and the func-
tion F (k) = −k2 c2(k) = −ω2(k). This property sets the basis
for spectral wave methods [Tessendorf 2004b].

Transforming the wave acceleration function back to the spatial do-
main, through the inverse Fourier transform, we see that the wave
acceleration can be computed through a convolution operation in
the spatial domain:

ḧ(x) = f(x) ∗ h(x). (5)

The operator ∗ denotes convolution.

We refer to f(x) = F−1(−ω2(k)) as the dispersion ker-
nel, which satisfies the linear wave dispersion relation. The
figure on the side shows an example dispersion kernel in 1D.
At first sight, it appears to be
well suited for compact trun-
cation; however, we have ob-
served that aggressive truncation
produces significant error and
quickly makes simulations unsta-
ble. Previous approaches have
failed at producing compact yet
accurate approximations of the
kernel [Loviscach 2002; Ottos-
son 2011], making the convolu-
tion form of the wave equation (5)
a mere theoretical result, without much practical use so far. The
frequency form of the wave equation (4) turns out to be more com-
putationally efficient and is used in practice [Tessendorf 2004b].



no error

max.error
 

Figure 4: We split a 512 × 512 kernel into high-frequency and
low-frequency bands, and truncate the high-frequency band down
to 32× 32 in the spatial domain. The images compare kernel error
(in frequency space) after adding the low-frequency band and the
truncated high-frequency band. On the left, default error; on the
right, error after our low-frequency compensation.

However, it makes a strong inherent assumption on the spatial in-
variance of the dispersion kernel, hence it is used only for open-
water phenomena with no complex obstacles.

Through the relation between wave number k, angular velocity ω,
and propagation velocity c = ω/k, we can also write the dispersion
relation (2) in a convenient way for the evaluation of the dispersion
kernel:

ω2 =

(
g k +

σ

ρ
k3
)

tanh(k d). (6)

Next, we introduce a compact yet accurate approximation of the
dispersion kernel, which enables computationally efficient applica-
tion of the convolution form of the wave equation. In addition, the
use of the spatial domain formulation enables the treatment of com-
plex obstacle interactions by modulating the dispersion kernel as a
spatially variant filter.

4 Compact Pyramid Kernel Design

The advantages of the convolution form of the wave equation for
obstacle treatment are easily surpassed by the computational cost
induced by the large support of the dispersion kernel. We observe,
however, that the reconstruction of higher frequencies requires a
smaller support. Motivated by this observation, designing a mul-
tiresolution representation appears as a natural way to obtain a com-
pact dispersion kernel, and Laplacian pyramids [Burt and Adelson
1983], or similar variants, offer a standard framework for this pur-
pose. Unfortunately, truncation of the pyramid representation pro-
duces devastating errors in the computation of wave accelerations.

We start this section by analyzing the resulting errors in the appli-
cation of a pyramid framework to the design of a multiresolution
dispersion kernel. Then, we introduce our approach for the design
of a compact yet accurate pyramid kernel, based on low-frequency
compensation of truncation error. For a pyramid with N levels, the
pyramid kernel consists of the full dispersion kernel at the coars-
est resolution f (N)(x), and high-frequency dispersion kernels at
all other resolutions {f (1)

H (x) . . . f
(N−1)
H (x)}. We conclude this

section by outlining the complete multiresolution computation of
wave accelerations.

4.1 Pyramid Kernel

The construction of a compact multiresolution dispersion kernel us-
ing pyramids works as follows. At each resolution, the dispersion

%
 r

el
a�

ve
 e

rr
o

r 
 c

(k
) 

 

−17

log(k)

−1

−0.5

0

0.5

1

1.5

2

k=1 k=256

32x32 with LF compensa�on
16x16 with LF compensa�on
32x32 no compensa�on
16x16 no compensa�on

Figure 5: We build kernel pyramids for a 512 × 512 kernel
with different spatial truncation widths, with and without our low-
frequency compensation. Then, we reconstruct the full kernel in
each case by adding together all pyramid levels with appropriate
low-pass filtering and upsampling, and compute the effective prop-
agation velocity c for each wave number k. The plot compares the
relative error in the effective wave dispersion c(k) vs. the ideal so-
lution (2). With 32×32 truncation and our low-frequency compen-
sation, error is negligible. We use these settings in our simulations.

kernel is separated into high-frequency and low-frequency parts.
The high-frequency part is truncated to produce a compact kernel,
while the low-frequency part is downsampled and the process is ap-
plied recursively. The runtime computation of acceleration works
as follows. At each level of the pyramid, the corresponding high-
frequency kernel is convolved with a downsampled version of the
full height field, to produce the accelerations in a frequency band.
At the lowest resolution, once the domain is small, the correspond-
ing full kernel is applied instead. Finally, all the acceleration bands
are progressively upsampled and added together.

For our analysis, we will consider one level of the pyramid, with
frequencies smaller than kmax, and with input dispersion kernel
F (k). We start by designing a high-pass filter WH(k) that will
guide the separation into high- and low-frequency bands. For this
purpose, we have used a cosine filter [Simoncelli and Freeman
1995]:

WH(k) =


cos
(
π
2

log2

(
2 k
kmax

))
, kmax

4
< k < kmax

2

1, k ≥ kmax
2

0, k ≤ kmax
4

(7)

The high-frequency dispersion kernel is then WH(k)F (k). Next,
to produce a compact kernel, we smoothly truncate the high-
frequency dispersion kernel in the spatial domain. For this purpose,
we have used a raised cosine window with roll-off factor 1

2
:

s(x) =


1
2

+ 1
2

cos
(
3πM
2RD

‖x‖ − π
2

)
, RD

3M
< ‖x‖ < RD

M

1, ‖x‖ ≤ RD
3M

0, ‖x‖ ≥ RD
M

(8)
D is the width of the domain, M the size of the domain in discrete
samples, and R the desired radius of the kernel in samples.

After truncation, the resulting high-frequency dispersion kernel in
the spatial domain is:

fH(x) = s(x)F−1 (WH(k)F (k)) . (9)

Similarly, the frequency-domain representation of the truncated
high-frequency dispersion kernel is:

FH(k) = S(k) ∗ (WH(k)F (k)). (10)



Figure 6: The images compare two frames of a wave simulation on a 128× 128 domain under different pyramid construction settings. With
default spatial truncation, low-frequency error leads to volume change and low-frequency oscillations that turn into instability over time.
With our low-frequency compensation, even aggressive 12× 12 truncation yields plausible results, and with 32× 32 truncation the error is
imperceptible even after 5 seconds.

As anticipated, truncation produces error. It produces high-
frequency error, but it also spills notable error into low frequencies.
This low-frequency error, evident in Fig. 4-left, produces volume
change and low-frequency oscillations that turn into instability over
time. Fig. 6 compares simulations with the full dispersion kernel, a
pyramid implementation with truncated kernels, and our proposed
solution to be described next.

We have also evaluated the approximate dispersion relations that
result from truncating kernels at different sizes. Fig. 5 compares
these dispersion relations to the accurate relation in (2).

4.2 Low-Frequency Compensation

The key insight behind our compact yet accurate pyramid kernel de-
sign is to fully compensate for the low-frequency error introduced
by high-frequency truncation. We add this error to the standard
low-frequency band of the kernel, and downsample the result to the
next pyramid level. In this way, the low-frequency error of high-
frequency truncation is compensated on the next pyramid level. The
procedure is applied recursively.

Let us define as E(k) the high-frequency truncation error:

E(k) = FH(k)−WH(k)F (k). (11)

We design the low-pass dispersion kernel by subtracting this error
from the full dispersion kernel prior to low-pass filtering. In addi-
tion, we design the low-pass filter such that the reconstruction of
the acceleration suffers only high-frequency error. Let us denote
the (unknown) low-pass filter as WL(k). Then, the low-frequency
dispersion kernel is defined as:

FL(k) = WL(k) (F (k)− E(k)). (12)

The approximate wave acceleration is obtained by summing the
contributions of the high- and low-frequency dispersion kernels.
Note also that the low-frequency contribution is computed on the
next pyramid level, and correct reconstruction requires low-pass fil-
tering of the height field prior to downsampling, as well as low-pass
filtering of the result of convolution prior to upsampling. We use
the same low-pass filter WL(k) for these two operations. Then, by
omitting downsampling and upsampling operations thanks to per-
fect reconstruction, the approximate wave acceleration Ḧ∗(k) is
computed as:

Ḧ∗(k) = FH(k)H(k) +WL(k) (FL(k) (WL(k)H(k))) .
(13)

By substituting the expressions for the truncation error (11) and
the low-frequency kernel (12), and reordering terms, we obtain an
expression of the approximate wave acceleration formulated as the
sum of the accurate solution and an error term:

Ḧ∗(k) =
(
WH(k) +W 3

L(k)
)
F (k)H(k)︸ ︷︷ ︸

true acceleration Ḧ(k)

+

(
1−W 3

L(k)
)
E(k)H(k)︸ ︷︷ ︸

error

. (14)

We design the low-pass filter WL(k) to match the true acceleration
in the right term:

WH(k) +W 3
L(k) = 1⇒WL(k) = (1−WH(k))

1
3 . (15)

And the resulting approximate acceleration is:

Ḧ∗(k) = Ḧ(k) +WH(k)E(k)H(k). (16)

The resulting error term, WH(k)E(k)H(k), includes the high-
pass filter WH(k); therefore, it exhibits only high-frequency error
introduced by the high-frequency truncation. In Fig. 4, we show
the error after reconstructing the full kernel by adding the trun-
cated high-frequency kernel and the low-frequency kernel, with and
without low-frequency compensation. With our kernel design, we
achieve full low-frequency compensation of the truncation error.

For the construction of the full pyramid kernel, the full dispersion
kernel F (i)(k) at level i is initialized as an ideally shrunk version of
the low-frequency dispersion kernel F (i−1)(k) from the previous
level. Finally, we apply the inverse Fourier transform to obtain the
spatial representations of the kernels.

In Fig. 5, we compare the approximation of the dispersion rela-
tion with and without our low-frequency compensation, for differ-
ent kernel sizes. Briefly, the RMS of relative error in wave propaga-
tion speed for a 32 × 32 pyramid kernel with low-frequency com-
pensation is just 0.06%, and there is only numerical low-frequency
error. For a pyramid kernel with no low-frequency compensation,
the RMS relative error grows to 0.11%, but there is a 0.6% low-
frequency error. Note that for a naı̈ve 32× 32 truncation of the full
kernel (with a smooth window), not shown on the plot, the RMS
relative error is 11.2% and the low-frequency error is 160%. For
the same experiment, a 31 × 31 iWave kernel suffers an RMS rel-
ative error in wave propagation speed of 98%, with low-frequency
error of 80%.



Fig. 6 illustrates how the truncation errors influence simulation re-
sults. Without compensation, the low-frequency error introduced
by truncation leads to volume change and low-frequency oscilla-
tions that turn unstable over time. Instead, we obtain very high
accuracy on the dispersion relation and the resulting simulations,
under kernel sizes that are computationally affordable. In practice,
we have used a kernel with radius R = 16 (i.e., 32× 32) in all our
examples. Further optimization of kernel shape and size would be
possible through optimal design of the high-pass filter WH(k) in
(7) and the truncation window s(x) in (8). We leave these options
for future work.

All our analysis and design assumes that the application of the dis-
persion kernel is a linear and spatially invariant operation, thus the
possibility to transform computations to and from frequency and
spatial domains. In Section 5 we will break the assumption, mak-
ing the application of the dispersion kernel a spatially variant op-
eration. This will introduce some small error in our computations.
We will analyze and discuss this error in Section 6, and show that it
is negligible in practical settings.

Algorithm 1 Simulation step

1: {Compute the height pyramid}
2: H(1)(k) = F(h(1)(x))
3: for each level i = 2 to N do
4: H(i)(k) = downsample(W

(i−1)
L (k)H(i−1)(k)))

5: end for
6: for each level i = 2 to N do
7: h(i)(x) = F−1(H(i)(k))
8: end for
9: {Compute the acceleration pyramid}

10: for each level i = 1 to N − 1 do
11: ḧ(i)(x) = f

(i)
H (x) ∗̄h(i)(x)

12: end for
13: ḧ(N)(x) = f (N)(x) ∗̄h(N)(x)
14: {Upsample and sum up the accelerations}
15: for each level i = 2 to N do
16: Ḧ(i)(k) = F(ḧ(i)(x))
17: end for
18: for each level i = N − 1 to 2 do
19: Ḧ(i)(k) += upsample(W

(i+1)
L (k) Ḧ(i+1)(k))

20: end for
21: ḧ(1)(x) += F−1(upsample(W

(2)
L (k) Ḧ(2)(k)))

22: {Add other acceleration terms (obstacles, damping)}
23: {Perform numerical integration}

4.3 Full Pyramid Implementation

Given a precomputed pyramid dispersion kernel
{f (1)
H (x) . . . f

(N−1)
H (x), f (N)(x)}, at runtime we compute

wave accelerations by applying this pyramid kernel to the wave
height field. However, instead of computing regular convolutions
with spatially invariant kernels, we handle reflecting boundary
conditions with arbitrary obstacles through the application of
spatially variant kernels. We refer to this operation as shadowed
convolution f(x) ∗̄h(x), as it incorporates obstacle shadow
information into the application of the dispersion kernels. Full
details are provided in Section 5.

Before every downsampling or upsampling operation, we need to
apply the low-pass filter WL(k) as discussed earlier. We have ob-
served that spatial low-pass filtering with a compact filter produces
aliasing artifacts that are perceptible in the simulation. Instead,
we apply the full frequency-domain filter WL(k), which requires
Fourier conversion from spatial to frequency domain and vice versa

Figure 7: Schematic depiction of three strategies to evaluate the
modified height field h̄ within the shadowed convolution (17), in an
example where a blue obstacle intersects with the kernel window.
The red pixel is the center of the kernel, where the acceleration is
computed. The white pixel is one particular pixel that contributes
to the convolution. From left to right: (i) reflection of height val-
ues about the obstacle normal (accurate but costly); (ii) zeroing of
height values within the obstacle (cheap but inaccurate); (iii) zero-
ing of height values within obstacle shadows (our proposed com-
promise).

on each level of the pyramid. Once in the frequency domain, the
downsample and upsample operations are trivial.

With all these observations in mind, the full algorithm for simula-
tion of dispersion waves follows the pseudocode in Algorithm 1.
All inverse Fourier transforms in Step 7 can be executed in paral-
lel, and similarly for all shadowed convolutions in Steps 11 and 13,
and all Fourier transforms in Step 16. We take advantage of GPU
streams to parallelize these operations in our implementation.

5 Interaction with Obstacles

The dispersion kernel assumes the existence of liquid in its whole
domain. Obviously, the presence of obstacles invalidates this as-
sumption, and the computation of accelerations turns into a spa-
tially variant filtering operation. We focus on reflecting boundary
conditions, and evaluate various approaches for spatially modulat-
ing the acceleration computation. We have found that modulation
based on obstacle shadows yields an excellent balance between ac-
curacy and computational cost. We also propose a massively par-
allelizable algorithm for the approximation of obstacle shadows,
which minimizes the overhead w.r.t. the regular convolution opera-
tion.

5.1 Reflecting Boundary Conditions

Let us formally express the spatially variant modulation of ac-
celeration computations in the presence of obstacles. As antici-
pated earlier, we refer to this operation as shadowed convolution
f(x) ∗̄h(x). We denote with o ∈ {0, 1} a binary obstacle field,
and with a h̄ a modified height value affected by the obstacle field.
Then, we express the spatially variant computation of acceleration
using the shadowed convolution as:

ḧ(x) = f(x) ∗̄h(x) =
∑

z∈ D
M

[−R...R]2

f(z) h̄(x, z, h, o). (17)

In the absence of obstacles, h̄(x, z, h, o = 0) = h(x− z), and the
shadowed convolution becomes a regular convolution operation.

For planar obstacles larger than the dispersion kernel, reflecting
boundary conditions can be trivially implemented by defining the
modified height field h̄ using height values replicated across obsta-
cle boundaries [Bridson and Müller-Fischer 2007]. This approach
could be extended to arbitrary obstacles and kernel sizes, by trac-
ing a ray from x to x− z, and reflecting the ray about the obstacle



Figure 8: The first two columns compare reflecting boundary conditions (left) vs. our shadow mask approach (middle). The behavior at
the walls is slightly different, which can be seen on the top row, 3.2 seconds into the simulation. However, the approaches produce very
similar wave frequency content, which is evident on the bottom row, 8 seconds into the simulation. The last column shows reflecting boundary
conditions with the iWave method, 20 and 30 seconds respectively into the simulation, for comparison.

normal at the first obstacle intersection. Unfortunately, this ray trac-
ing approach adds a tremendous computational overhead on top of
a regular convolution operation, in particular by adding branches
during stream processing.

We propose an alternative for approximating reflecting boundary
conditions, which defines the modified height h̄ simply by masking
the height value at locations that are under some obstacle’s shadow.
Formally, the modified height field is evaluated as:

h̄(x, z, h, o) =

{
0, ∃α ∈ [0, 1] s.t. o(x− α z) = 1,

h(x− z), otherwise.
(18)

Fig. 7 compares schematically the evaluation of the modified height
for accurate reflecting boundary conditions, a simple obstacle mask
that ignores the height value at locations occupied by obstacles, and
our shadow mask criterion. Fig. 9 compares simulation results with
the three approaches. With the obstacle mask approach, waves leak
through thin objects. Note that the notion of ‘thin’ is relative to the
wave numbers computed at each level of the pyramid, hence large
objects may appear thin at low wave numbers. With our shadow
mask approach, some waves appear slightly damped w.r.t. the ac-
curate approach, but the overall behavior is well preserved.

Reflecting boundary conditions are a type of Neumann condition
which constrain the energy flux through the boundary to be zero.
Our shadow mask approach is in practice a Dirichlet condition,
which forces reflected waves to have a negative amplitude such that
the sum of incident and reflected waves cancel out. Up close, the

Figure 9: Simulations of water waves passing through a slit on the
far side, executed using different strategies for the approximation
of reflecting boundary conditions. From left to right: (i) reflection
of height values; (ii) our approach, zeroing of height values within
obstacle shadows; (iii) zeroing of height values within obstacles.
Our shadow approach approximates well the effects with accurate
reflecting boundary conditions. By zeroing height values within ob-
stacles, on the other hand, waves leak through the obstacles.

two conditions may appear visually different, but at a distance they
exhibit a very similar frequency spectrum and appear visually very
similar, as shown in Fig. 8. The figure also shows reflecting bound-
ary conditions with the iWave method, for comparison.

5.2 Shadow Mask Propagation

Convolution operations are particularly well suited for stream pro-
cessing. Multiple domain locations execute the convolution in par-
allel with minimal register pressure, efficient shared memory usage,
and no branching. We aim at designing a shadowed convolution op-
eration that minimizes the computational overhead w.r.t. the regular
convolution operation.

Given a grid point x where the acceleration is computed, the ratio-
nale of our efficient shadowed convolution operation is to traverse
the convolution window outward from x, propagating the shadow
mask in conjunction with the evaluation of the kernel multiplica-
tions. Specifically, we partition the convolution window into four
equal triangles (top, bottom, left, and right). As shown in Fig. 10,
for the top triangle we propagate the shadow mask upward one row
at a time. We approximate the true shadow propagation by defining
four radial sectors within the triangle, and for each sector two dif-

Shadow mask row i
Shadow mask row i+1

Propagation
directions

even rows

odd rows

Figure 10: Shadows are propagated row by row, computing the
shadow mask for row i + 1 as a Boolean function of the obstacle
mask in row i + 1 and the shadow mask in row i. The top triangle
of the kernel window (and similarly for the rest) is divided into four
sectors. Two different shadow propagation rules, for even and odd
rows, are defined on each sector, to approximate accurate shadows
with a minimal computational cost.



Figure 11: Rubber ducks swim in a bathtub and generate wakes that exhibit dispersion into slow gravity waves and faster capillary waves.
The domain is 0.75 meters long, and is simulated on a 512× 512 grid, at 400 ms per frame.

ferent propagation directions for odd and even rows. Fig. 10 shows
two example shadows approximated with our efficient propagation
approach. We store each row’s shadow mask as a bit-mask, and the
shadow mask for row i + 1 is computed as a Boolean function of
the obstacle field for row i+ 1 and the shadow mask for row i. The
particular Boolean function for each sector and row depends on the
active propagation directions, and is efficiently implemented using
additional masks.

Our efficient shadow propagation closely approximates accurate
shadows, and hence our shadowed convolution operation succeeds
at modeling reflecting boundary conditions. This is achieved with
minimal overhead w.r.t. regular convolution. Specifically, the ex-
isting overhead is due to the modified traversal of the kernel win-
dow, the propagation of the shadow mask (one Boolean function
per row/column), and the modulation of the kernel multiplications
with shadow bits.

6 Results

We have demonstrated the application of our wave simulation
method on several animation examples. In all of them, simulations
were executed on a 4.0 GHz Quad-core Intel Core i7-4790K CPU
with 16GB of memory, and a NVIDIA GTX970 graphics card with
4GB of memory. For all the examples, the kernel pyramid has been
constructed using 32 × 32 kernels on each level. We have used
symplectic Euler integration, with a tiny amount of damping. Un-
der CFL conditions, the simulations are stable; we add damping
only to slowly relax the waves over time.

Statistics and Performance In Table 1, we summarize the sim-
ulation settings and performance in our major experiments. The
average simulation cost is of roughly 200 ms per time step for a
1024 × 1024 grid. The time step requirements depend on the size
and resolution of the domain, as well as the water depth. Together,
they determine the range of wave lengths represented in the simula-
tion, and thus the range of propagation velocities. In our examples,
the time step varies between 2 ms for scenes with a resolution of
1 mm, and 16 ms for a scene with a resolution of 15 mm. Perfor-

Scene Size Depth Grid Time Cost/step
(m) (m) size step (ms) (ms)

Pond 4 6 1024 2 201
Bathtub 0.75 0.2 512 2 53
Canal 15 10 1024 16 192

Table 1: Scene settings and performance statistics for our major
experiments.

mance varies then between 0.6 fps and 5 fps (for 1/60 sec. frames).
The dominant cost of our simulations is the shadowed convolution
operations, which take 64% of the time on 1024× 1024 grids, fol-
lowed by FFT and IFFT operations, which take 28% of the time.

Scale-Dependent Effects The pond scene in Fig. 1 and the bath-
tub scene in Fig. 11 show a combination of short gravity waves
and capillary waves. When the paper birds and the ducks produce
wakes, thin capillary waves travel faster outward. The pond scene
also shows circular waves produced by rain drops, again with char-
acteristic capillary effects. All waves, short and long, are reflected
efficiently on both static and dynamic objects, thanks to the effi-
cient handling of reflecting boundary conditions. The canal scene
in Fig. 13 shows longer gravity waves, which also reflect on the
objects in the scene.

Shallow Water and Refraction Our method can easily be
adapted to incorporate non-uniform water depth, following the
depth-based kernel interpolation approach of Tessendorf [2004b].
We have validated this extension, which incurs only a performance
penalty of 22%. The extension succeeds at capturing the character-
istic refraction and steepening effects of the shallow water regime,
as shown in Fig. 12.

Analysis of Wave Transfer As mentioned in Section 4.2, the
shadowed convolution operation breaks the linearity and spatial in-
variance assumptions made in our pyramid kernel design. As a
result, the low-pass filtering of height fields carried out in the con-
struction of the height pyramid is not fully compensated during
the reconstruction of accelerations. The height field is effectively
blurred in space prior to convolution with the pyramid kernel, and
this blur may transfer waves through thin obstacles. Similarly, on
the reconstruction step, the same blur effect may transfer wave ac-

Figure 12: Our method captures the characteristic refraction and
steepening effects of shallow water. In the example, water height
ranges from 10 m on the left side to just 10 cm on the right side of a
2-meter-wide domain. The snapshots are taken 1.3 and 2.2 seconds
into the simulation respectively.



Figure 13: A boat plows through a canal and generates wakes that reflect on the walls. The domain is 15 meters long, and is simulated on a
1024× 1024 grid, at just 200 ms per frame.

celerations through thin obstacles.

We have evaluated this wave transfer effect, and we have found that
it is negligible in practical settings, far milder than the leaking suf-
fered by the obstacle-mask approximation of reflecting boundary
conditions shown in Fig. 9. We have designed a worst-case scenario
to analyze the magnitude of wave transfer, with two pools separated
by a perfect wall, just 5 cells wide, on a single 512×512 simulation
grid. We start a wave on one of the pools and evaluate the amount
of energy transferred to the other pool over time. After one minute
of simulation time, less than 5% of the energy has transferred to the
wrong side, which is barely visible, as shown in Fig. 14. We con-
clude that, in combination with all the wave dynamics in a regular
animation, wave transfer is imperceptible.

7 Discussion and Future Work

We have presented the first method to accurately simulate dispers-
ing height field waves with obstacle interactions in the spatial do-
main. This is made possible with a carefully constructed, error-
compensated dispersion kernel, and a fast, GPU-friendly obstacle
shadowing technique. In conjunction, these contributions enable
efficient simulations of a wide range of wave phenomena with com-
plex obstacles.

Our method makes certain approximations that could affect the re-
alism of the animated waves. First and foremost, our method sim-
ulates the Airy linear wave model, hence nonlinear effects are sim-
ply not accounted for. Reflecting boundary conditions are also ap-
proximated, although we have demonstrated that our shadow mask
approximation produces qualitatively similar results. In addition,
as discussed earlier, our downsampling and upsampling operations
lead to some wave transfer across thin obstacles. Instead of our
current frequency-domain low-pass filtering, we plan to investigate
customized spatial filters that prevent wave transfer altogether.

Figure 14: Evaluation of wave transfer on worst-case scenario. A
wave is induced on the left pool, and after one minute of simula-
tion time less than 5% of the energy is transferred to the right pool
through the thin wall.

Other parts of our algorithm also make assumptions that leave room
for improvement. E.g., our damping currently does not consider
wave lengths, and dampens the whole spectrum uniformly. For ob-
stacles, we currently assume that they extend all the way to the
ground. All of these areas will be interesting avenues for refine-
ment in the future,

We are also interested in adding a sharpening filter to our sim-
ulations, as it is commonly done for spectral wave synthe-
sis [Tessendorf 2004b]. This will make it possible to realize more
generic, trochoidal wave shapes.

In the future, we are excited about the outlook to tightly cou-
ple accurate, height field wave simulations with three-dimensional
solvers. Our approach could provide the missing link to smoothly
transition from ocean waves synthesized with spectral approaches,
to regular 3D liquid simulations.

Acknowledgements

We would like to thank Daniel Lobo, Rosa Sánchez and Héctor
Barreiro for help with demo production, and Chris Wojtan and
the anonymous reviewers for useful feedback. This work was
supported in part by the Spanish Ministry of Economy (grants
TIN2014-62143-EXP and TIN2015-70799-R), the European Re-
search Council (ERC-2011-StG-280135 Animetrics and ERC-
2015-StG-637014 realFlow), and a National Science Foundation
CAREER award (IIS-1253948). Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National
Science Foundation.

References

AIRY, G. 1849. Tides and Waves. J.J. Griffin.

BRIDSON, R., AND MÜLLER-FISCHER, M. 2007. Fluid simula-
tion. In ACM SIGGRAPH 2007 Courses.

BRIDSON, R. 2015. Fluid Simulation for Computer Graphics,
Second Edition. Taylor & Francis.

BURT, P., AND ADELSON, E. 1983. The laplacian pyramid as
a compact image code. IEEE Transactions on Communications
31, 4, 532–540.

CHENTANEZ, N., AND MÜLLER, M. 2010. Real-time simulation
of large bodies of water with small scale details. In Symposium
on Computer Animation, 197–206.

CORDS, H. 2008. Moving with the flow: Wave particles in flowing
liquids. In Winter School of Computer Graphics (WSCG).

DARLES, E., CRESPIN, B., GHAZANFARPOUR, D., AND GON-
ZATO, J. 2011. A Survey of Ocean Simulation and Rendering



Techniques in Computer Graphics. Comput. Graph. Forum 30,
43–60.

DEAN, R., AND DALRYMPLE, R. 1991. Water Wave Mechanics
for Engineers and Scientists. World Scientific.

ENRIGHT, D., NGUYEN, D., GIBOU, F., AND FEDKIW, R. 2003.
Using the particle level set method and a second order accu-
rate pressure boundary condition for free surface flows. In
ASME/JSME 2003 4th Joint Fluids Summer Engineering Con-
ference, American Society of Mechanical Engineers, 337–342.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. In Proc. of SIGGRAPH, 23–30.

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of
liquids. Graph. Models Image Process. 58 (September).

IHMSEN, M., ORTHMANN, J., SOLENTHALER, B., KOLB, A.,
AND TESCHNER, M. 2014. SPH fluids in computer graphics. In
Eurographics - State of the Art Reports, 21–42.

JESCHKE, S., AND WOJTAN, C. 2015. Water wave animation
via wavefront parameter interpolation. ACM Transactions on
Graphics 34, 3, 27.

KASS, M., AND MILLER, G. 1990. Rapid, stable fluid dynamics
for computer graphics. In Proc. of SIGGRAPH.

KIM, T., TESSENDORF, J., AND THUEREY, N. 2013. Closest point
turbulence for liquid surfaces. ACM Transactions on Graphics
32, 2.

LAMB, H. 1994. Hydrodynamics, 6 ed. Cambridge University
Press.

LOVISCACH, J. 2002. A convolution-based algorithm for animated
water waves. In Eurographics Short Presentations, 381–389.

MERCIER, O., BEAUCHEMIN, C., THUEREY, N., KIM, T., AND
NOWROUZEZAHRAI, D. 2015. Surface turbulence for particle-
based liquid simulations. ACM Transactions on Graphics 34, 6,
202.

NIELSEN, M. B., AND BRIDSON, R. 2011. Guide shapes for high
resolution naturalistic liquid simulation. In ACM Transactions
on Graphics (TOG), vol. 30, ACM, 83.

NIELSEN, M. B., SÖDERSTRÖM, A., AND BRIDSON, R. 2013.
Synthesizing waves from animated height fields. ACM Transac-
tions on Graphics (TOG) 32, 1, 2.

OTTOSSON, B. 2011. Real-time Interactive Water Waves. Master’s
thesis, KTH.

PATEL, S., TESSENDORF, J., AND MOLEMAKER, J. 2009. Mono-
coupled 3D and 2D river simulations. In Symposium on Com-
puter Animation, Poster.

SIMONCELLI, E. P., AND FREEMAN, W. T. 1995. The steer-
able pyramid: a flexible architecture for multi-scale derivative
computation. In Image Processing, 1995. Proceedings., Interna-
tional Conference on, vol. 3, 444–447.

SOLENTHALER, B., BUCHER, P., CHENTANEZ, N., MÜLLER,
M., AND GROSS, M. 2011. Sph based shallow water simu-
lation. In Virtual Reality Interactions and Physical Simulations
(VRIPhys).

STAM, J. 1999. Stable fluids. In Proc. of SIGGRAPH, 121–128.

TESSENDORF, J. 2004. Interactive Water Surfaces. Charles River
Media.

TESSENDORF, J. 2004. Simulating ocean surfaces. SIGGRAPH
Course.

TESSENDORF, J., 2008. Vertical derivative math for iwave.

THACKER, J. 2010. Go with the flow. 3D World (Sept.).

THUEREY, N., AND PFAFF, T., 2016. MantaFlow.
http://mantaflow.com.

THÜREY, N., WOJTAN, C., GROSS, M., AND TURK, G. 2010. A
multiscale approach to mesh-based surface tension flows. ACM
Transactions on Graphics 29 (July), 48:1–48:10.

WANG, H., MILLER, G., AND TURK, G. 2007. Solving gen-
eral shallow wave equations on surfaces. In Symp. on Computer
Animation.

YU, J., WOJTAN, C., TURK, G., AND YAP, C. 2012. Explicit
mesh surfaces for particle based fluids. Comp. Graph. Forum.

YUKSEL, C., HOUSE, D. H., AND KEYSER, J. 2007. Wave parti-
cles. ACM Transactions on Graphics 26, 3 (July).


