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We propose a method of increasing the apparent spatial resolution of an ex-
isting liquid simulation. Previous approaches to this “up-resing” problem
have focused on increasing the turbulence of the underlying velocity field.
Motivated by measurements in the free surface turbulence literature, we
observe that past certain frequencies, it is sufficient to perform a wave sim-
ulation directly on the liquid surface, and construct a reduced-dimensional
surface-only simulation. We sidestep the considerable problem of gener-
ating a surface parameterization by employing an embedding technique
known as the Closest Point Method (CPM) that operates directly on a 3D
extension field. The CPM requires 3D operators, and we show that for sur-
face operators with no natural 3D generalization, it is possible to construct
a viable operator using the inverse Abel transform. We additionally propose
a fast, frozen core closest point transform, and an advection method for the
extension field that reduces smearing considerably. Finally, we propose two
turbulence coupling methods that seed the high resolution wave simulation
in visually expected regions.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Physically based modelling; I.6.8
[Simulation and Modeling]: Types of Simulation—Animation

Additional Key Words and Phrases: Fluid simulation, liquid simulation,
wave turbulence, physically-based modelling

1. INTRODUCTION

Despite much recent progress, it remains a challenge to simulate
large-scale, high-resolution liquids. The recently popular “up-res”
approach separates simulations into large- and small-scale details,
and runs separate algorithms for each scale. In addition to being
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more efficient, imposing a one-way coupling between scales can
facilitate design. A user can interact with a fast, low-resolution sim-
ulation, and later add additional high-resolution detail in a way that
does not invalidate the low-resolution design. This approach has
been successfully applied to several natural phenomena, including
cloth simulations [Bergou et al. 2007] and single phase smoke sim-
ulations [Kim et al. 2008; Narain et al. 2008; Schechter and Brid-
son 2008; Nielsen et al. 2009; Huang et al. 2011; Yuan et al. 2011].
However, it has been less successful for liquid simulation. Practi-
tioners have reported [Lait 2011] that applying single-phase tech-
niques to liquid simulations introduces undesirable artifacts and
does not create plausible new details.

We posit that the reason for this is that the physics being simu-
lated has been incomplete. Previous methods for increasing the res-
olution of liquid simulations [Narain et al. 2008; Jang et al. 2010;
Yuan et al. 2012] have assumed that if the turbulence of the underly-
ing fluid velocity field is increased, high resolution surface dynam-
ics will follow. However, the literature on free surface turbulence,
also known as “wave turbulence” or “weak turbulence”, maintains
that the free surface, especially at high frequencies, possesses addi-
tional dynamics that are not mere images of the underlying veloc-
ity field. While the low frequency components of the velocity field
initiate surface waves, many high frequency details arise from the
independent oscillation of the surface membrane [Savelsberg and
van de Water 2008; Falcon 2010].

We present a method that captures these additional dynamics
by explicitly performing a wave simulation on the liquid surface.
In doing so, we reduce the volumetric problem to a surface-only
problem. We use the state-of-the-art in visual wave simulation, the
iWave algorithm [Tessendorf 2004b; 2004a]. As we are simulating
a scalar on a surface of rapidly changing topology, we immediately
encounter the problem of consistently parameterizing a deforming
surface. We sidestep this problem entirely by using a newly de-
veloped embedding method known as the Closest Point Method
(CPM) [Ruuth and Merriman 2008]. The CPM operates on a 3D
extension field instead of a 2D surface field, and thus requires no
surface parameterization. However, it requires the existence of 3D
spatial operators. Natural 3D analogs of 2D surface operators are
often available, such as the 5-point 2D and 7-point 3D Laplacians.
However, for many operators, such as the fractional Laplacian in
the iWave algorithm, no obvious 3D equivalent is available, and
it is unclear if the CPM can be used. We show that a viable CPM
operator can be constructed by taking the inverse Abel transform of
the original surface operator.

The CPM has predominantly been used on rigid 3D objects,
where the cost of computing a closest point transform [Mauch
2003] can be amortized. We instead deal with a deforming sur-
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Fig. 1: An overview of the different steps of our simulation algorithm. We read in data from an existing level set solver and add additional
surface detail by performing a surface-only wave simulation. The final result can be used as a bump or displacement map during rendering.

face where the transform is computed and advected every frame.
In order to prevent this from becoming the bottleneck, we propose
an iterative transform based on the Nacelle algorithm [Tessendorf
2011] that is faster than fast marching-based methods [Adalsteins-
son and Sethian 2003] and more effective at maintaining sharp fea-
tures. Lastly, we propose two turbulence seeding methods that pro-
vide visually consistent methods of coupling the high-resolution
surface simulation to the low-resolution volume simulation.

Our specific contributions are as follows:

—A method of constructing operators for the Closest Point Method
when no natural 3D operator is available.

—A fast, iterative Nacelle method for building the closest point
transform of a deforming surface.

—A frozen core version of the Nacelle method and an efficient
narrow-band advection method that improves surface details.

—Two turbulence seeding strategies that introduce waves in visu-
ally expected regions.

2. PREVIOUS WORK

Prior graphics work: Level set simulation of liquids was pio-
neered by Foster and Fedkiw [2001]. Since then, many techniques
have been proposed for simulating liquids with higher spatial reso-
lution. Recent works include coarse grid projections [Lentine et al.
2010], higher order reinitialization methods [Heo and Ko 2010],
complementary Lagrangian meshes [Wojtan et al. 2009], and fast
tall cell methods [Chentanez and Müller 2011]. Bargteil et al.
[2006] developed a method for texturing such simulations and suc-
cessfully ran a reaction-diffusion simulation on the surface. How-
ever, significant surface parameterization problems arose, which
led to subsequent work [Bargteil et al. 2006; Kwatra et al. 2007;
Narain et al. 2007] where the parameterization was synthesized
each step. A surface texture was then synthesized from exemplars;
no simulation took place. Our method sidesteps the parameteriza-
tion problem entirely and allows a non-trivial iWave simulation to
be performed on the surface.

One of the goals of our algorithm is to facilitate the design of
liquid animations, so it can also be considered a liquid control al-
gorithm. Many approaches, such as keyframes [McNamara et al.
2004; Shi and Yu 2005] and guiding shapes [Nielsen and Bridson
2011] have been developed to address this problem. Our method
can be used to add additional surface detail to the results of these
algorithms, so we consider them to be complementary.

A good survey of techniques for simulating ocean waves is avail-
able in Darles et al. [2011]. While these techniques give good re-
sults for scenes without interaction, we do a full 3D simulation
that automatically adds sources and handles obstacle interactions.
Other recent work on wave simulation has included the develop-

ment of fast, Lagrangian “wave particles,” [Yuksel et al. 2007], and
the addition of the FFT algorithm described by Tessendorf [2004b]
to a shallow water solver [Chentanez and Müller 2010]. Several
previous authors have attempted to simulate waves on deforming
surfaces. Angst et al. [2008] simulated waves on a fixed character
mesh surface that does not undergo any topology changes. They
only simulated the traditional wave equation, not the iWave equa-
tion. Thürey et al. [2010] also simulated the wave equation on a La-
grangian mesh in order to capture surface tension effects. The focus
of their method was on sheet breakup and large scale instabilities,
so they did not achieve the fine-scale wave detail that we are able to
produce. Kim et al. [2009] simulated a vortex sheet along the liq-
uid surface to capture high resolution interface effects. Again, their
approach initiated detailed sheet breakup, which is orthogonal to
the surface detail that we capture in this current work, and could be
combined with ours to achieve highly detailed liquids.

The closest work to ours is Patel et al. [2009], which performs
an orthogonal projection of a 2D iWave simulation onto a 3D river.
This approach works best when the 3D liquid is well-approximated
by a 2D plane, which is a well-founded assumption for rivers, but
clearly not true for general liquids. Figure 4, for example, would
be difficult to capture without introducing significant distortions,
but is a trivial test case for our method. The algorithm also requires
the user to manually specify turbulence injection sites, whereas we
propose a method that injects turbulence automatically.

We use the Closest Point Method (CPM) [Ruuth and Merriman
2008], a level set-based, parameterization-free surface simulation
method, to perform our iWave simulation. The CPM is not the first
level set-based method proposed for simulating surface phenomena
(see e.g. previous variational formulations [Bertalmı́o et al. 2001;
Greer 2006]), but it sidesteps many of the complexities present in
previous methods, so we prefer it here. All of the level set-based
methods require 3D generalizations of 2D surface operators, so
even if a variational method was employed, the 3D iWave kernel
we present in §3.3 would be needed. Other works have used the
CPM to simulate fire [Hong et al. 2010], the wave equation, and the
Navier-Stokes equations [Auer et al. 2012]. All of these works deal
with cases where the surface operators have obvious 3D analogs,
such as the gradient and Laplacian. To our knowledge, ours is the
first method that successfully uses an operator that is a non-trivial
3D generalization. Hong et al. [2010] apply the CPM to deforming
surfaces by propagating scalars between frames using the extension
field. We present a fast, iterative method of computing the extension
that could be used to accelerate their method, and detail-preserving
mechanisms that could further improve their results.

Prior physics work: Free surface turbulence is a well studied
topic in physics and engineering, and many excellent survey pa-
pers are available [Brocchini and Peregrine 2001; Dias and Kharif
1999]. Within this literature, it is well-established (see e.g. [Falcon
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2010]) that general hydrodynamic turbulence and free surface tur-
bulence are two distinct phenomena. The former follows the Kol-
mogorov energy spectrum, and the latter the Kolmogorov-Zakharov
spectrum [Zakharov et al. 1992]. While liquid free surfaces respond
to low frequency eddies in the underlying velocity field, they also
exhibit behavior indicative of a “surface skin” layer [Brocchini and
Peregrine 2001] that continually tears and undergoes “surface re-
newal” [Komori et al. 1989].

In particular, Savelsberg and van de Water [2008] experimen-
tally observed that the correlation between the surface gradient and
the subsurface velocity field rapidly diverges in turbulent flows.
This indicates that the common approach of using the velocity field
to capture free surface turbulence [Narain et al. 2008; Jang et al.
2010; Yuan et al. 2012] is insufficient. Savelsberg and van de Wa-
ter [2008] also established that the surface could be approximated
as a set of advected capillary-gravity wave sources, and concluded
that “the surface is most likely excited by the largest subsurface
turbulence scales only.” Motivated by their experimental results,
we allow the curvature induced by subsurface turbulence to inject
waves into our simulation, but then perform a separate, advected
wave simulation along the liquid surface.

3. A FREE SURFACE TURBULENCE ALGORITHM

In this section, we describe our algorithm for simulating turbulence
on a free surface. We still start with preliminaries on the Closest
Point Method (CPM) and iWave algorithms, show how they can
be unified, and then present the complete algorithm. A high level
overview of our approach can be seen in Figure 1.

3.1 The Closest Point Method

The Closest Point Method [Ruuth and Merriman 2008] is an
embedding method for simulating partial differential equations
(PDEs) on arbitrary surfaces. As with other embedding methods,
it works directly on 3D volumes that avoid the problems of tradi-
tional surface-based simulation, such as the construction of low-
distortion surface parameterizations, and the development of spe-
cialized surface-based operators such as the Laplace-Beltrami op-
erator [Wardetzky et al. 2007; Chuang et al. 2009]. While the algo-
rithm operates in 3D, it supports narrow banding, which allows it
to scale according to the complexity of the surface, not the volume.

Similar to previous embedding methods, the CPM operates on
the 3D extension field of the surface, which is constructed by as-
signing each grid point the scalar value of the nearest surface point.
Simulation proceeds by applying the 3D version of the desired PDE
to the extension field. For example, in the case of surface diffusion,
the familiar 7-point Laplacian stencil would be used instead of a
Laplace-Beltrami operator. More concretely, an explicit CPM for
diffusing a surface scalar u2D through T timesteps of size ∆t on a
fixed surface mesh would proceed as shown in Algorithm 1.

Algorithm 1: diffuseUsingCPM(u2D)

begin1
Build the closest point transform, CP , of u2D2
Build the extension field, u1

3D = CP (u2D)3
for t = 1 to T do4

u∗3D = ut3D + ∆t · ∇2ut3D5

ut+1
3D = CP (u∗3D)6

end7

In this algorithm, ∇2 corresponds to the 7-point Laplacian, and
CP interpolates and propagates the scalar values at grid points ad-
jacent to surface out to the entire volume. The algorithm is very
similar to a basic 3D explicit integration, with the key addition of
the extension step on Line 6. Despite its apparent simplicity, the
CPM has been shown to produce the correct curved surface behav-
ior. We will not recap here the validations that have been performed
on the method (see e.g. [Macdonald et al. 2011] for a recent ex-
ample), and will instead introduce relevant details when we later
construct our 3D fractional Laplacian.

The CPM is not the first embedding method proposed for im-
plicit surfaces, as variational versions have been available for some
time [Bertalmı́o et al. 2001; Greer 2006]. Unlike the variational ver-
sions, the CPM does not require the underlying PDEs to be rewrit-
ten to include tangent plane projections that constrain the dynamics
to level sets near the interface. Greer [2006] described degeneracies
that can occur if the narrow band boundary conditions are not care-
fully set in a variational method, but no such non-physical boundary
conditions are needed by the CPM. Even if a variational version is
preferred, all existing embedding methods require 3D generaliza-
tions for their 2D operators, so the results presented in §3.3 are still
needed. All of the methods require the construction of extension
fields, so the closest point transform we describe in §3.5 could also
be used to accelerate the variational approaches.

3.2 The iWave Algorithm

The iWave algorithm [Tessendorf 2004b] produces more realistic
water wave behavior than alternatives such as the traditional wave
equation, and is used extensively in production (see e.g. [Carlson
2007; Flores and Horsley 2009; Angelidis et al. 2011]). It is derived
from the linearized Bernoulli’s equation for irrotational flow,

∂φ

∂t
= −p− U, (1)

where φ is the velocity potential, p is the pressure, and U is the
potential energy. It can be stated in undamped form as the equation:

∂2h

∂t2
= −g

√
−∇2h. (2)

Here, h is the fluid height, t is time, g is the gravity magnitude, and√
−∇2 is a fractional Laplacian operator [Podlubny 1999; Miller

and Ross 1993]. Aside from the radical, it is very similar to the
traditional wave equation, ∂2h/∂t2 = c∇2h. The fractional term
arises because the gradient of the potential φ in Bernoulli’s equa-
tion is constrained to be divergence-free, ∇2φ = 0, and a squaring
term in the vertical direction h must be accounted for. For this rea-
son, it is also referred to as the vertical derivative operator. For
further details, see §3.2 in [Tessendorf 2004b].

The fractional nature of the operator significantly complicates its
spatial discretization, because fractional derivatives usually have
non-local support, and the resulting operator is divergent in fre-
quency space due to the k2 term, where k denotes the spatial fre-
quency. Tessendorf [2004b] addresses the first problem by impos-
ing a hard spatial cutoff, and the second by introducing a Gaussian
“soft-cutoff” that suppresses the growth of the k2 term. The final
vertical derivative operator G2D(r) is then stated in polar coordi-
nates [Tessendorf 2008] as

G2D(r) =

Z ∞
0

k2e−k
2
J0(kr)dk, (3)

where r is the radial coordinate, e−k
2

is the soft-cutoff, and J0 is
the zeroth Bessel function of the first kind. The hard spatial cutoff is
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realized by only evaluating Eqn. 3 out to a user-specified r. Eqn. 3
is discretized into a convolution kernel using Algorithm 2.

Algorithm 2: iWave2DKernel(W , kM )
Data: iWave2D is the convolution kernel, W is the spatial

width of the desired kernel, and kM is the maximum
desired wave frequency to be captured.

begin1
iWave2D = 02
h = bW/2c3
for y = -h to h do4

for x = -h to h do5

r =
p
x2 + y26

for k = 0 to kM do7

iWave2D(x, y)+ = k2e−k
2
J0(kr)8

end9

3.3 Building a 3D Vertical Derivative

In order to simulate iWave on a surface using the CPM, we need
a 3D version of Eqn. 3 and Algorithm 2. However, unlike the
Laplacian operator, the vertical derivative has no obvious 3D ana-
log. Indeed, the definition of the operator seems to be inherently
surface-based, as the radical arises from taking the square root in
the normal direction. The salient spatial function in Eqn. 3 is the
J0 Bessel function of the first kind, so a reasonable first attempt
is to replace it with the spherical Bessel function of the first kind,
j0(r) = sinr

r
= sinc(r). We found that generating a 3D kernel us-

ing a simple, naı̈ve replacement of J0 with j0 results in an unstable
simulation and unusable results. More care is clearly needed in the
construction of the operator. The broader question is: what makes
a good CPM operator? Ruuth and Merriman [2008] reason that if
u3D is an extension of the scalar field u2D, then u3D does not vary
in the normal direction, and so at the surface,

∇u3D = ∇Su2D, (4)

where ∇S denotes the 2D surface gradient. Therefore, u3D will
only vary along the surface, and the ∇S operator will only induce
motion in the surface tangent directions.

We examine this intuition in a slightly different form. Say we
have the scalar field u2D(x, y), and its extension u3D(x, y, z). We
can state Eqn. 4 in terms of a convolution about the origin with an
arbitrary operator D:Z

x,y

D2D(x, y) u2D(x, y) dx dy =Z
x,y,z

D3D(x, y, z) u3D(x, y, z) dx dy dz.

Since u3D is an extension field, it must be constant in some normal
direction. The direction is arbitrary, but for expository purposes, let
us choose the z direction:Z

x,y

D2D(x, y) u2D(x, y) dx dy =Z
x,y

u3D(x, y, 0) dx dy

Z
z

D3D(x, y, z) dz.

By construction,
R
x,y

u2D(x, y) =
R
x,y

u3D(x, y, 0), so if we as-
sume that D3D(x, y, z) is spherically symmetric, which is reason-
able given that the Laplacian and gradient operators also display
this form of symmetry, this further reduces to:

D2D(x, y) =

Z
z

D3D(x, y, z) dz. (5)

Eqn. 5 provides an answer to our original question: a good 3D CPM
operator should project down to the original 2D operator. Simple
inspection shows that this condition is met by the familiar 7-point
Laplacian and gradient operators. This can be viewed as ensuring
that a CPM simulation on the extension field of a 2D plane produces
the same results as a straight 2D simulation.

More formally, the projection of a spherically symmetric func-
tion is an Abel transform. So, if a natural 3D operator is not avail-
able, we can construct one by taking the inverse Abel transform.
Fortunately, the J0 function is both spherically symmetric and has
a known Abel transform pair [Bracewell 1999],

A−1 (J0(r)) =
1

π
sinc(r),

whereA−1 denotes the inverse Abel transform. Using this relation,
we can now build the inverse of the 2D iWave kernel:

A−1

„Z ∞
0

k2e−k
2
J0(kr)dk

«
=

1

π

Z ∞
0

k3e−k
2
sinc(kr)dk.

(6)
Note that an extra k appears due to the J0(kr) term, and we have

folded it into the k3 term. Eqn. 6 can now be used to generate a 3D
vertical derivative kernel, provided that the removable singularity
at sinc(0) is properly handled. Our 3D vertical derivative operator
can now be stated as:

G3D(r) =
1

π

Z ∞
0

k3e−k
2
sinc(kr)dk. (7)

3.4 Reducing Projection Error

The J0 and j0 functions arise from the fractional operator, so they
have non-local support that falls off relatively slowly in space.
Some projection error is therefore inevitable, as the 3D kernel only
extends a finite amount in the normal direction (z in the preced-
ing equations), and the integral in Eqn. 5 will be truncated to some
subinterval of [−∞,∞].

If a normal direction is known a priori, e.g. if the surface is
known to be a static plane, then it is possible to correct for this
error. For example, the projection error ε(x, y) for a single position
(x, y) in the z direction is,

ε(x, y) = D2D(x, y)−
Z h

−h
D3D(x, y, z) dz, (8)

where h denotes the spatial cutoff of the kernel. If ε(x, y) is sub-
tracted from an appropriate kernel cell, e.g. D3D(x, y, 0), the pro-
jection error through (x, y) would be reduced to zero. Unfortu-
nately, the normal direction generally changes according to the liq-
uid surface, so precomputing such corrections would introduce un-
desirable anisotropies into the 3D kernel.

However, it is possible to eliminate all projection error from the
cell with the largest weight, the center cell. As the kernel is spheri-
cally symmetric, ε(0, 0) is the same regardless of projection direc-
tion. If ε(0, 0) is subtracted from the center kernel cell, the projec-
tion error through the center can be eliminated entirely. With this
correction, we found that the relative error of a kernel of width 15
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Fig. 2: Validation of our 3D iWave kernel: On the left is the result of a
standard planar 2D iWave simulation after a figure-eight shaped mouse in-
put and 280 timesteps. On the right is the result of our 3D simulation after
the same number of timesteps on the same input. Our simulation method
introduces less than 1% error per timestep and produces visually indistin-
guishable results.

is 0.26% under the L∞ norm. The complete algorithm for generat-
ing the 3D iWave kernel is now shown in Algorithm 3. In all our
examples, we set kM = 10.

2D Validation: We have verified that in the simple 2D planar
case, our 3D kernel accurately reproduces the results of the original
2D iWave algorithm. We injected wave sources along a pre-defined
curve on a planar surface, and used them as inputs to both our 3D
solver and the original reference implementation of the 2D iWave
solver [Tessendorf 2004b]. As can be seen in Figure 2, as well as
the accompanying video, our approach is able to accurately repro-
duce the results obtained with the 2D iWave algorithm. To quantify
the error of our three-dimensional iWave kernel, we computed the
difference between the 2D and 3D simulations. We calculated the
relative L2 error of the height fields, and found a per-timestep error
between 0.15% and 0.25%.

Algorithm 3: iWave3DKernel(W , kM )
Data: W is the width of the desired kernel. kM is the

maximum desired wave frequency to be captured.
iWave2D is the kernel computed by Alg. 2.

begin1
iWave3D = 02
h = bW/2c3
for z = -h to h do4

for y = -h to h do5
for x = -h to h do6

r =
p
x2 + y2 + z27

for k = 0 to kM do8

iWave3D(x, y, z)+ = k3

π
e−k

2
sinc(kr)9

sum = 010
for z = -h to h do11

sum + = iWave3D(0, 0, z)12

iWave3D(0, 0, 0) − = iWave2D(0, 0)− sum13
end14

3.5 A Fast Closest Point Transform

In many previous applications of the CPM, the surface mesh is
fixed, so the cost of computing the closest point transform of a

surface can be amortized over many timesteps. In our application,
the surface is known to be rapidly deforming, so no such amor-
tization is possible. Therefore, it is crucial that a fast method of
computing the closest point transform be devised. One approach
is to use fast marching-based methods [Adalsteinsson and Sethian
2003], but this approach involves a heap search that is difficult to
parallelize, and tends to smear out the scalar field. This smearing
is usually considered a feature of fast marching-based methods, as
it corresponds to rarefaction solutions of the Eikonal equation. In
our application however, this smearing introduces spurious varia-
tions along the normal direction. The scan conversion algorithm of
Mauch [2003] is another possibility, but it uses the surface trian-
gle mesh, whereas we have a signed distance function that contains
richer geometric information.

We have found that the signed distance function of the existing
liquid simulation can be used to compute a fast, iterative, highly
parallelizable closest point transform. A first order version of the al-
gorithm is similar to the method described by Losasso et al. [2006].
Given a signed distance function ϕ, and the cell centers of the com-
putational grid, we can compute the closest point of a cell by start-
ing a particle, ci, at the cell’s center, and iterating along the nor-
mal direction, ϕ(ci) · ∇ϕ(ci), until ϕ(ci) < ε. We used the value
ε = 10−6 in our computations.

The Nacelle algorithm of Tessendorf [2011] describes a second
order method of warping one level set onto another. We can use
the same method to compute the closest point transform, which
corresponds to a warp of all points to the zero level set. The iteration
for each particle ci then becomes,

Γ =
`
∇ϕ(ci)

TH(ϕ(ci))∇ϕ(ci)
´
/|∇ϕ(ci)|

∆ = −ϕ(ci)/|∇ϕ(ci)|

ci = ci +
“
−1 + (1 + 2 ·∆ · Γ)

1
2

” ∇ϕ(ci)

Γ
,

where H(·) denotes the Hessian operator. The Hessian can ap-
proach zero in flat regions of the distance field and become prob-
lematic near the medial axis, so we test if Γ < ε at the beginning of
each iteration, and fall back to first order iteration if the condition
is true. We found that this variant of the Nacelle algorithm is highly
parallelizable, and very fast. Results obtained via fast marching and
our Nacelle variant are shown in Figure 3.

We found that implementing our Nacelle variant was quite sim-
ple, as it is essentially a particle iteration augmented by a sec-
ond order correction. None of the heaps or quadratic solves in-
volved in fast marching are needed, and the final code is drasti-
cally simpler than the canonical implementation of the Mauch algo-
rithm (https://bitbucket.org/seanmauch/stlib.). Unlike
fast marching methods, it also supports efficient lazy evaluation:
the extension value of any random cell can be queried and com-
puted inO(1) time without computing the values at all of the inter-
vening cells between the queried cell and the interface. We exploit
this feature when performing MacCormack advection in §3.6.

3.6 Building and Advecting the Extension Field

A Frozen Core Extension Field: Once the closest point transform
has been computed, a method must be selected to extend surface
values into the narrow band. Ruuth and Merriman [2008] originally
used 4th order Newton divided differences, but subsequent work
derived 4th and 6th order Weighted Essentially Non-Oscillatory
(WENO) schemes [Macdonald and Ruuth 2009], which we will
refer to as WENO4 and WENO6. Too frequent re-extension can
be computationally expensive and smear out the scalar field unnec-
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6 • Kim, Tessendorf, and Thürey

Fig. 3: Left to right: a sphere with a checkerboard surface; the center slice
of the sphere’s extension field, computed using fast marching; the same
slice computed using our Nacelle variant. Our variant is faster and does not
smear out the scalars. Computing the 2003 extension field took 3 minutes
and 20 seconds with fast marching, and 21 single-threaded seconds with
our algorithm.

essarily. Greer [2006] observed that this is analogous to the well-
known problems of periodic velocity field re-extension and signed
distance field reinitialization. We also encounter severe smearing
when re-extending every timestep (Figure. 4(a)), even when using
WENO4 or WENO6. Never re-extending the surface scalars cap-
tures crisper features (Figure. 4(b)), but it becomes unclear if valid
surface dynamics are being simulated. In both cases, undesirable
anisotropies appear that reveal the underlying grid.

We found that a subtle modification fixes both of these problems.
When computing the extension field, we ‘freeze’ the values that are
less than one grid cell away from the interface. These values define
the on-surface solution, and are accurately computed by the solver,
so they should be smeared out as little as possible. We refer to this
as a frozen core, as it freezes the values at the core of the narrow
band. This change significantly improves the crispness of the re-
sults, and also suppresses the appearance of grid anisotropies, as
shown in Fig. 4(c). This strategy is not entirely novel, as Adal-
steinsson and Sethian [2003] make use of a similar technique when
initializing their fast marching method. However, we have not seen
these substantial improvements noted anywhere else in the litera-
ture, so they are worth emphasizing here.

Narrow Band MacCormack Advection: We found that first or-
der semi-Lagrangian advection [Stam 1999] smeared out details
captured by the CPM, and opted instead to use the MacCormack
advection scheme of Selle et al. [2008]. Two modifications signifi-
cantly improved our results. First, we replaced the linear interpolant
for the backtraces with the same WENO4 scheme used for exten-
sion field construction. Second, we observed that extending and ad-
vecting the surface field unnecessarily interpolated the field twice:
once during extension, and again during advection. In order to re-
move this unnecessary smearing, we construct the extension field
using nearest neighbor interpolation. We use the Nacelle algorithm
to find the nearest surface point, but instead of interpolating grid
values to obtain a final result, we simply grab the value from the
nearest grid cell. This essentially computes an anti-rarefaction so-
lution that suppresses all variation in the normal direction. As in-
terpolation still occurs during advection, the field is still smoothed,
and we did not observe any stairstepping artifacts. In addition to
producing significantly crisper surface details (see Figure 6), the
removal of the additional WENO4 call makes this approach com-
putationally cheaper.

The advection scheme must support narrow banding to avoid in-
troducing a volumetric bottleneck into the algorithm. Narrow band-
ing with first order semi-Lagrangian advection is straightforward,
as backtraces can be computed for a band around the interface, and
the extension values for this band can be computed on-the-fly using
the Nacelle algorithm. However, the MacCormack method advects

(a) With extension

(b) Without extension

(c) With frozen core extension

Fig. 4: We inserted a small circular wave at the top of a sphere and simulated
500 timesteps using different re-extension strategies. Top to bottom: with
WENO4 re-extension every timestep, with no re-extension, and WENO4
re-extension using the frozen core from §3.6 every step. The frozen core
result does not smear out the waves and suppresses grid anisotropies that
ruin the symmetry of the other cases.

the field forward and backwards to compute an error term. The nar-
row bands for these stages differ, and computing the values for the
backwards stage is significantly more complex: they correspond to
an advected extension field, not just an extension field. Therefore,
we cannot obtain valid values for the backwards band by simply
applying the Nacelle algorithm. A obvious solution to this problem
would be to fatten the narrow band for the forward stage accord-
ing to the grid velocities, but in practice this results in a significant
amount of unnecessary computation.

We instead performed a preliminary pass to determine the exact
set of cells needed to perform narrow band MacCormack advec-
tion. We traced the velocities forward to find all the cells needed
for the forward band, and traced these cells backwards to deter-
mine the cells needed in the backwards band. We then constructed
the extension field for all of these cells and performed the advec-
tion. We give an overview of the subtleties of this process in Figure
5. The preliminary pass did not contain any calls to the WENO4
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Fig. 5: An overview of our narrow band advection. For clarity, we only show one side of the narrow band, and use linear interpolation
stencils. The active cells for each step are highlighted, and the source cell with its velocity is shown in step 1. Note that both step 2 and 4
are adding cells to set A, which contains all cells that are initialized by extension in step 5. The cells from step 4 are needed to compute the
backward advection in step 7.

Fig. 6: Top: Without frozen core extension and improved advection from
§3.6. Bottom: Same frame, with modifications from §3.6. Note that the
turbulent wake behind the block is lost entirely without our improvements.

interpolant, and thus consisted mostly of fast integer operations that
consumed 5% to 6% of the running time. By comparison, when we
fattened the narrow band according to cell velocities, it doubled the
extension field building time. This build time becomes the main
bottleneck at high resolutions (See Table I), so this approach added
at least an additional 25% to the running time. Our two pass method
is clearly more efficient.

3.7 Turbulence Seeding

Wave propagation is only perceived as realistic if waves are seeded
in visually expected regions. Following the intuition of Kim et
al. [2008], we identify under-resolved regions of the fluid surface
where details are being lost. For liquids, this corresponds to re-
gions of high surface curvature, so we inject turbulence into lo-
cations where the absolute principal surface curvatures are close
to the Nyquist limit of the current grid. This is in line with other
curvature-based strategies in liquid simulations, such as those em-
ployed recently by Thüery et al. [2010] and Yu et al. [2012] to seed
a (classical) surface wave simulation, as well as the particle seeding
strategy of Foster and Fedkiw [2001]. Intuitively, this corresponds

to regions where the ‘surface skin’ layer of the liquid tears and ini-
tiates surface oscillations.

We compute a source field for injecting surface waves by filtering
the maximum curvature values with a Catmull-Rom spline centered
at half the grid resolution, and a falloff value of one-fifth the grid
resolution. Once the seeding regions have been located, we set the
source term in these regions to the local Gaussian curvature in or-
der to reflect the variations occurring along the surface. We found
that the curvature computation method from Museth et al. [2002]
provided smooth, robust results for both the principal and Gaus-
sian curvatures. Note that all of these quantities can be computed
efficiently on the low-resolution grid.

We found that in some scenarios, adding this source field to the
height field was sufficient (Figs. 8 and 10). However, if the appear-
ance of a higher apparent surface resolution is desired, convolving
the source field once with the vertical derivative operator creates
the impression that scattering has occurred across a wider range of
scales, and produces higher frequency waves. For this additional
convolution, we use a vertical derivative operator (Eqn. 7) inte-
grated over the [2, kM ) domain, and use the extension field of the
result. This seeding method was used in Figure 7. We exclude the
[0, 2) range because these frequencies are close to the Nyquist fre-
quencies already present on the grid. We add the source field to the
height fields of both the current and previous timesteps in order to
convey the impression that the waves have persisted for some time,
but are currently scattering into higher frequencies. Otherwise, the
sources induce instantaneous velocities that produce visual spikes
in the height field. We have found that these two turbulence seeding
strategies, Gaussian curvature and convolved Gaussian curvature,
work well in practice. These are by no means the only strategies
possible, but we leave further exploration to future work.

The seeding strategy should be made aware of internal obsta-
cles in order to avoid injecting spurious turbulence. In Figure 7, a
large amount of surface curvature exists where the liquid wraps
around the central column. Much of this curvature is along the
liquid-obstacle interface, not the liquid-air interface, so injecting
turbulence in these regions is incorrect, and can result in overly
lively waves around the column. This problem is addressed by ze-
roing out the source term in regions surrounding internal obstacles.

3.8 The Complete Algorithm

We have now described all of the components of our algorithm. The
complete algorithm is shown in Algorithm 4. The extensions per-
formed on Line 2 are the nearest neighbor extensions described in
§3.6, while the extensions on lines 6 and 8 use the WENO4 inter-
polant. As the iWave algorithm uses explicit integration, the surface
wave simulation is run for T user-specified substeps for every step
of the coarse simulation. We found that setting T = 5 worked well
in all of our examples. Line 11 encodes the Leapfrog scheme from
Tessendorf [2004b].
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Fig. 7: A 1002×50 PhysBAM simulation, up-resed to 8002×400. The left half of each image shows the original simulation, and the right shows our up-resed
version. Our simulation took roughly 10× the time of the original, whereas a brute force simulation would take roughly 512×, i.e. 83, the time. The source
and height values around the column were clamped to zero as respectively described in §3.7 and §4.

4. DISCUSSION AND RESULTS

The iWave algorithm uses the ‘deep water’ approximation h � λ,
where h is the water depth and λ is the wave length. As we are
simulating high frequencies, our λs are quite small, so this approx-
imation is valid even if the liquid is globally shallow. We note that
this ‘relatively deep’ approximation is fairly common in the fluid
mechanics literature, and some practitioners [Johnson 1997] pre-
fer to use the terms ‘short’ and ‘long’ waves in lieu of ‘deep’ and
‘shallow’ in order to avoid any confusion. If alternate dispersion re-
lations are desired, Eqn. 7 can be scaled using the exact same terms
described in Tessendorf [2004b].

Implementation: We ran all of our simulations on a 12-core
2.66 Ghz Mac Pro with 96 GB of memory. All of our simula-
tions fit into memory, so we did not need to use a hierarchical
or blocked data structure. However, we expect that such structures
would yield additional speedups due to improved memory locality.
We used the WENO4 interpolant [Macdonald and Ruuth 2008],
which has a stencil width of four. The more expensive WENO6
was also tested, but it did not improve the results sufficiently to jus-
tify the additional computation. We used a 3D iWave kernel (Eqn.
7) with a stencil width of 15. Reducing its spatial extent would re-

duce the running time, but at the cost of reduced wave propagation
speeds. We used OpenMP to parallelize the convolution, Nacelle
computation, and extension field computation stages of our algo-
rithm. While we parallelized the most computationally intensive
functions, the entire algorithm can be run in parallel, so it is an ex-
cellent candidate for GPU acceleration. We found that the obstacle
interaction method of the original iWave algorithm, which set the
height values on the interior of obstacles to zero, worked well in
our 3D generalization. No additional considerations were needed.
All of our results were rendered using a modified version of PBRT
[Pharr and Humphreys 2010] that read in the height fields from our
simulations as solid textures and then used them as bump maps.
The solid texture lookup function in PBRT was modified to use the
WENO4 interpolant.

Houdini test: We compared both the scalability and quality of
our algorithm to the Houdini simulation from Lait [2011]. We used
the Houdini 12 solver, which utilizes a parallel Preconditioned
Conjugate Gradient solver, and collected timing information for
the scene at the resolutions of 1003, 2003 and 4003. At the high-
est resolution, the simulation took nearly a week, which is totally
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Fig. 8: A 1003 PhysBAM simulation, up-resed to 8003. The left half of each image shows the original simulation, and the right shows our up-resed version.
The 8× up-resing only took approximately twice the time of the original simulation.

impractical for production. The overall motion of the liquid clearly
changed between resolutions.

By comparison, our solver was able to up-res the 1003 simula-
tion to 2003 in less than half of the time of the base simulation.
When comparing our results to the direct 2003 solution, we ob-
served that our algorithm captured higher frequency motions (Fig-
ure 10). The main bottleneck in the simulation at this resolution
was writing the large volume files to disk, which took up 46% of the
running time. Using a sparse volume data structure, or an integrated
simulation-renderer solution, would yield additional speedups. We
also up-resed the 1003 simulation to 4003, 8003, and 10003. The
8003 and 10003 simulations in particular captured extremely de-
tailed surface motion, and would take months for the Houdini 12
solver to compute. Disk I/O remained one of the bottlenecks, re-
spectively taking 25%, 22%, and 21% of the running times. Convo-
lution and extension field construction times also become more sig-

nificant, which suggests that more aggressive parallelization could
yield further speedups.

The running time exhibits inferior scaling when increasing from
4003 to 8003, though the scaling is still significantly better than the
greater than 8× scalings observed for the direct volumetric solvers.
The disk I/O does not appear to be solely responsible for this, as
the convolution and extension field stages also exhibit roughly this
scaling. Most likely the memory traffic from the large volumes is
saturating the bus, which further suggests that investigating high
bandwidth architectures such as a GPU might be fruitful.

PhysBAM tests: Our algorithm is agnostic to the source of the
level set data, so Figures 7 and 8 show the results of running our
algorithm on two simulations produced using the PhysBAM code
release [Dubey et al. 2011]. In keeping with our goal of up-resing,
we again ran the simulation at relatively coarse 1003 and 1002×50
resolutions. The simulations were run single-threaded, as the multi-
threaded version of the PhysBAM release is listed as “experimen-
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Example Base
Res.

Upped
Res.

Frame
Time

Total
Time

Scaling Convolution Extension
Field

Disk I/O Advection

Houdini 1003 N/A 00:00:24 01:39:00 - - - - -
Figure 10 2003 N/A 00:03:44 14:59:00 9.08 - - - -

4003 N/A 00:38:00 152:00:00∗ 10.1 - - - -
1003 2003 00:00:12 00:48:14 - 00:04:45 (10%) 00:11:11 (23%) 00:22:16 (46%) 00:04:55 (10%)
1003 4003 00:00:58 03:55:00 4.87 00:37:34 (16%) 01:13:22 (31%) 00:58:40 (25%) 00:32:15 (14%)
1003 8003 00:05:29 21:56:15 5.60 03:28:43 (16%) 06:27:35 (29%) 04:43:19 (22%) 02:49:09 (13%)
1003 10003 00:11:12 44:51:56 2.07 05:46:41 (13%) 11:33:35 (26%) 09:21:30 (21%) 05:31:15 (12%)

Pouring 1003 N/A 00:01:52 06:13:20 - - - - -
Figure 8 1003 2003 00:00:07 00:24:38 - 00:02:20 (9%) 00:03:27 (14%) 00:14:12 (58%) 00:01:54 (8%)

1003 4003 00:00:34 01:53:55 4.62 00:13:58 (12%) 00:28:13 (25%) 00:38:51 (34%) 00:13:29 (12%)
1003 8003 00:03:15 13:00:52 6.85 01:23:50 (11%) 03:33:08 (27%) 03:40:38 (28%) 01:45:20 (13%)

Dam 1002×50 N/A 00:00:18 01:33:00 - - - - -
Break 1002×50 2002 × 100 00:00:06 00:30:44 - 00:01:57 (6%) 00:02:45 (9%) 00:21:05 (69%) 00:01:41 (5%)
Figure 7 1002×50 4002 × 200 00:00:21 01:45:33 3.43 00:12:30 (12%) 00:23:47 (23%) 00:38:13 (36%) 00:11:56 (11%)

1002×50 8002 × 400 00:02:48 11:13:09 6.38 01:20:12 (12%) 02:52:27 (26%) 02:50:46 (25%) 01:35:31 (14%)

Table I. : All timings are in hours:minutes:seconds. The Scaling column denotes the scaling relative to the timing in the preceding row. Rows marked N/A in
the Upped Res. column are timings for direct Houdini or PhysBAM simulations. The columns Convolution - Advection refer to fractions of the total running
time. The entry ∗ is the projected time based on 100 frames. The Houdini, Pouring, and Dam Break examples were respectively run for 240, 200, and 300
timesteps. The Houdini and PhysBAM timings included Disk I/O, so they have been included in timings of our algorithm to facilitate comparisons.

Algorithm 4: surfaceWaves(ϕt, vt, CP t−1, ht, ht−1)

Data: ϕt and vt are the current level set and velocity field of
the coarse simulation; CP t is the closest point
transform of timestep t, ht is the surface height at
timestep t; α is a damping coefficient, T is the number
of substeps, ∆t is the surface simulation timestep size.

begin1
ht = CP t−1(ht), ht−1 = CP t−1(ht−1)2
Advect ht and ht−1 using vt.3
Build closest point transform of ϕt, CP t.4
source = filtered curvature of ϕt, convolved by Eqn. 7.5
source = CP t(source)6
for i = 1 to T do7

ht = CP t(ht), ht−1 = CP t(ht−1)8
d = ht convolved by Eqn. 79
temp = ht10

ht = (2−α∆t)ht−ht−1

1+α∆t
+ source− d11

ht−1 = temp + source12
Clear the source field if i = 113

end14

tal”. We expect that a multi-threaded implementation would pro-
duce timings competitive with the Houdini solver.

We observed timing breakdowns and scalings that were similar
to the Houdini example. Disk I/O dominates initially, but decreases
to roughly a quarter of the running time at higher resolutions. The
same decrease in scaling at 8003 is also observed. In the “Dam
Break” example (Figure 7), we were able to up-res the simulation
by a factor of four along each spatial axis using approximately the
same amount of time as the original simulation, and in the “Pour-
ing” example (Fig. 8), in less time than the original simulation.

Other wave kernels: Once the components of our turbulence
algorithm are in place, it becomes straightforward to experiment
with other models of wave motion. We ran the “Dam Break” exam-
ple using the traditional wave equation instead of the iWave kernel

in Figure 9. The traditional wave equation still gives useful results,
but the smaller kernel introduced a smaller timestep size, and the fi-
nal results tended to suppress higher-frequency waves. However, if
the user prefers this ‘look’, we found that it could be achieved with
minimal code modification. Other models, such as the Korteweg-de
Vries and non-linear Schrödinger equations [Johnson 1997] could
also be used to achieve alternate looks.

The importance of damping: We found that the damping pa-
rameter, α in Algorithm 4, had a significant impact on the quality
of the final results. For less damped simulations, 0 < α < 0.2,
the waves persisted longer than expected and produced a distract-
ing “memory” effect. Higher dampings, 0.2 < α < 0.4, produced
behavior more in line with perceptual expectations. This is in agree-
ment with the default setting of α = 0.3 in the original 2D iWave
implementation [Tessendorf 2004b]. A comparison of various α
settings can be seen in Figure 11 and the supplemental video.

5. CONCLUSIONS AND FUTURE WORK

We have described an efficient, closest point method of increasing
the apparent spatial resolution of an existing liquid simulation. We
have addressed two main obstacles to performing this in a Eule-
rian setting: the construction of a 3D iWave operator, and the effi-
cient extension of surface scalars. We have additionally described
methods for maintaining simulation details, and proposed two tur-
bulence seeding methods. The algorithm can produce surface fea-
tures in running times competitive with, and sometimes superior to,
the original base simulation. We have used our algorithm to simu-
late liquids containing detailed, high frequency motion that, to our
knowledge, have not been captured by any previous method.

Since we are dealing specifically with the problem of “up-resing”
a liquid, our algorithm only performs a one-way coupling. It re-
mains to be seen if the higher frequency detail can be coupled back
to the coarse simulation, as was done in Thürey et al. [2010]. Our
algorithm only requires signed distance and velocity fields as in-
puts, so it could be applied to animated meshes, as was done in
[Angst et al. 2008], by computing the signed distance field of the
mesh and extrapolating velocities from the vertices. For particle-
based liquid simulations, a distance function such as the one pro-
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Fig. 10: In reading order: Original 1003 Houdini simulation, 2, 4, 8, and 10× upres, and direct 2003 Houdini simulation. Note how even at 2× upres, higher
frequency waves than those in the direct 2003 solution are captured.

posed by Zhu and Bridson [2005] could provide a basis for our
approach. While an implicit version of the CPM [Macdonald and
Ruuth 2009] would allow our algorithm to take larger timesteps,
modifications would be needed to the Leapfrog scheme used by the
iWave algorithm. Such a scheme could significantly improve the ef-
ficiency of simulating high phase-velocity capillary waves. In §3.3,
we imposed a physically consistent spherical symmetry constraint
on the 3D kernel. Relaxing this assumption presents opportunities
for motif-based stylizations such as those in Ma et al. [2009].

We have shown that CPM surface physics can be viewed in terms
of an Abel transform, and that surface scalar extension and convo-
lution become bottlenecks at high resolutions. There is a rich body
of literature surrounding the Fourier-Abel-Hankel transform cycle
[Bracewell 1999], so there may be a signal processing approach
that can accelerate these stages. Finally, we have used the inverse
Abel transform to generalize one non-trivial 2D operator, the frac-
tional Laplacian, to 3D. We are confident that this methodology
will be useful in making other surface-only operators compatible
with the CPM.
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