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Abstract
Subspace fluid simulations, also known as reduced-order simulations, can be extremely fast, but also require basis matrices
that consume an enormous amount of memory. Motivated by the extreme sparsity of Laplacian eigenfunctions in the frequency
domain, we design a frequency-space codec that is capable of compressing basis matrices by up to an order of magnitude.
However, if computed naïvely, decompression can be highly inefficient and dominate the running time, effectively negating
the advantage of the subspace approach. We show how to significantly accelerate the decompressor by performing the key
matrix-vector product in the sparse frequency domain. Subsequently, our codec only adds a factor of three or four to the overall
runtime. The compression preserves the overall quality of the simulation, which we show in a variety of examples.

Categories and Subject Descriptors (according to ACM CCS): I.6.8 [Computer Graphics]: Simulation and Modeling—Types of
Simulation–Animation, Computer Graphics

1. Introduction

Subspace methods, also known as model reduction or reduced or-
der methods, have experienced recent success at accelerating fluid
simulations in computer graphics. They have been applied to prob-
lems as varied as real-time interaction [TLP06], real-time con-
trol [BP08], and efficient re-simulation [KD13]. However, one of
the primary drawbacks of this approach is that the speed increase
comes at the cost of much larger memory requirements. Subspace
simulations easily consume tens of gigabytes of memory when
dealing with high-resolution scenes.

Memory consumption is a known challenge with subspace meth-
ods, and compression strategies have been developed for other ap-
plications that benefit from the approach, such as deformable mod-
els [SILN11] and sound synthesis [LAJJ14]. However, no practical
subspace compression method has been developed for fluid simu-
lations in computer graphics. The closest analog is a method for
domain decomposition [WST09], which is a complementary ap-
proach that exploits very low-frequency regularities. Ideally, both
domain decomposition and compression could be applied simulta-
neously to alleviate memory issues.

The large memory footprint occurs because a basis matrix U 2
R3N⇥r is needed at runtime. Here, N is the number of grid cells in
the fluid simulation, and r is the size of some lower-dimensional
subspace. In general, r ⌧ N, and the simulation is efficient because
time integration can be performed in the r-dimensional subspace
instead of the much larger N-dimensional space. However, each
column of U is essentially a copy of the entire simulation grid, so

even if r is small, U can be very large. For example, if N = 2563

and r = 50, U already consumes over 10 GB of memory.

In this paper, we present a compression method that reduces the
size of U by up to an order of magnitude. Motivated by the fact that
Laplacian Eigenfunctions [DWLF12] exhibit extreme sparsity in
the Fourier domain, we apply a frequency transform to U. We then
design an adaptive quantization strategy to arrive at a JPEG-like 3D
compression scheme that encodes our final, sparse representation.

Once compressed, the basis matrix U must be decompressed at
runtime. We show that our approach enables efficient decompres-
sion by performing the matrix-vector product sparsely in the fre-
quency domain. The final running time is within a factor of three
or four of the original, uncompressed subspace simulation.

Our contributions are as follows:

• A novel frequency domain compressor for subspace matrices
that uses adaptive quantization to reduce memory usage by up
to an order of magnitude.

• A decompressor that allows matrix-vector multiplies to be per-
formed efficiently in the frequency domain.

• Visual and numerical evidence that the proposed codec results in
minimal artifacts and preserves the generality of the subspace.

2. Previous Work

Efficiently simulating visually complex fluids is a continuing chal-
lenge in computer graphics. For an overview of recent techniques,
we refer the reader to the book by Bridson [Bri15]. Many different
approaches have been taken for improving the performance of these
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simulations, such as spatial coarsening [LGF04, ATW13], vortex
sheet [BKB12, PTG12], position-based [MMCK14], and turbu-
lence methods [TKP13]. In this work, we specifically focus on the
subspace approach. This acceleration technique has been applied
successfully to a variety of physical phenomena, such as hyperelas-
tic solid deformation [BJ05,AKJ08,vTSSH13,WMW15,YLX⇤15],
sound synthesis [OSG02, LAJJ14, LFZ15], and cloth simulation
[HTC⇤14, XUC⇤14].

It has also had some success in fluid simulation for computer
graphics, starting with the work of Treuille et al. [TLP06]. From
there, the approach has been applied to control [BP08] and re-
simulation [KD13] problems, and extended to handle arbitrary
tetrahedral meshes [LMH⇤15] and deforming domains [SSW⇤13].
Many of these works feature 2D results most prominently [BP08,
GKSB15], which we expect is in part due to the memory limitations
we address here. The work of Wicke et al. [WST09] also aimed to
address this limitation by providing a modular basis that can be
tiled throughout a domain. Our approach is complementary; the
memory footprint of the modular tiles could be further reduced by
applying the compression techniques from this paper.

As mentioned in §1, the problematic need for large subspace
matrices has been addressed in sound [LAJJ14] and deformation
[SILN11] applications, but we are unaware of any approaches
that address this problem for fluids. Inspired by the success of
Fourier-based turbulence visualization techniques [YL95,TBR⇤12]
and their surprising efficacy when compressing Laplacian eigen-
functions [DWLF12] (see §4.1), we present a 3D, transform-
based scheme [Say12] that is able to discover sparse, memory-
efficient approximations to arbitrary subspace velocity matrices.
Our transform-based technique uses the visualization-oriented ap-
proaches as a starting point, and adds critical features such as fast
matrix-vector products and adaptive quantization to make it practi-
cal for subspace simulation.

3. Subspace Preliminaries

We will begin with a brief description of the subspace approach
in order to identify the source of its large memory requirements.
Subsequently, we will construct a set of requirements that a com-
pression algorithm should fulfill.

While many subspace fluid simulation algorithms have been de-
veloped for computer graphics, they all use the Galerkin projection
approach [Bat96]. A large-dimensional velocity field that contains
3N degrees of freedom over N grid cells is projected into a smaller,
r-dimensional velocity subspace using a static linear basis. We de-
note this change-of-basis matrix as U 2R3N⇥r, where each column
of U is itself a velocity field. Specifically, we can project a vector
u 2 R3N down to its reduced-order counterpart q 2 Rr by comput-
ing the product UT u = q. In a well-designed subspace simulation,
the velocity fields spanned by the columns of U will be sufficient to
capture the space of fields that interest the user. This projection of-
ten occurs at the beginning of each timestep, as a force vector f that
contains important information such as user inputs, buoyancy, and
vorticity confinement forces must be projected into the subspace.

Once this projection has been performed, the equations of mo-
tion can be integrated over this reduced number of variables very

quickly. This can be done using exponential integration [TLP06],
Stable Fluids-like semi-Lagrangian advection coupled with Chorin
projection [KD13], variational integration [LMH⇤15], or even sim-
ple explicit Euler integration [DWLF12]. Since U is agnostic to the
underlying integrator, our compression scheme can be applied to
any of these methods.

Once time integration has been performed, the change-of-basis
must be reversed so that the results can be displayed. This is known
as the “velocity reconstruction” stage [TLP06, DWLF12], and sev-
eral options are available. The most direct method is a full recon-
struction where the 3N-dimensional velocity field is reconstructed
directly, i.e. u = Uq. This method is preferred if a dense particulate
is present in most of the simulation domain. Velocity values are
then needed essentially everywhere to advect the particulate for-
ward in time. Alternatively, if immersed media such as leaves are
being simulated, a sparse reconstruction is possible because ve-
locities are only needed at the grid cells containing leaves. These
velocities v 2R3 can be obtained by extracting the three rows of U
that correspond to each cell of interest, Uv 2 R3⇥r, and computing
the product v = Uvq. If the number of leaves is much smaller than
N, this approach can be highly efficient.

The main drawback of the subspace approach is that the matrix
U can be very large, as each of its columns is itself a velocity field.
A compression method that reduces the size of U is most useful if
it efficiently supports at least three different operations:

• Projection: The time needed to compute the full UT u = q
matrix-vector product should not prohibitively increase due to
the presence of a decompressor.

• Dense reconstruction: Conversely, Uq = u must also be fast.
• Batched random access: In order to support sparse reconstruc-

tion, it should be possible to query the velocity field at a set
of random points on the simulation grid. In addition to effi-
cient sparse reconstruction, this feature is also needed to sup-
port certain types of time integration, e.g. cubature-based semi-
Lagrangian schemes [KD13].

With these requirements in mind, we can design our codec, which
we present in the next section.

4. A Subspace Compression Scheme

4.1. Compression Basis Selection

In order to design a compression scheme for the velocity fields that
comprise the columns of U, we must first select a transform basis
that would ideally result in extremely sparse fields. Both discrete
cosine transform (DCT) [YL95] and wavelet [GWGS02, TBR⇤12]
bases have been successfully used in the past to compress scalar
volumes, so they are promising candidates for velocity fields. We
choose to use DCT because we observe that in the special case
of Laplacian Eigenfunctions [DWLF12], they actually yield ideal
compression. The eigenfunctions inside a closed 3D box take the
general form:

ux(k1,k2,k3) = kx sin(k1x)cos(k2y)cos(k3z)
uy(k1,k2,k3) = ky cos(k1x)sin(k2y)cos(k3z)
uz(k1,k2,k3) = kz cos(k1x)cos(k2y)sin(k3z),

(1)
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where ux,uy, and uz respectively represent the x, y, and z compo-
nents of a velocity field. The ki coefficients determine the frequency
content of the field, and the three k terms are scaling coefficients
that are derived from ki.

We make the straightforward observation that the spatially vary-
ing components of each of these functions are purely trigonometric
functions, so by applying appropriately interleaved DCTs and dis-
crete sine transforms (DSTs) to these fields, they can be reduced to
delta functions, regardless of their spatial frequency. In the notation
of Long and Reinhard [LR09], if we use FSCC to denote a DST in
the x direction and DCTs in the y and z directions, we obtain,

FSCC [kx sin(k1x)cos(k2y)cos(k3z)] = kxd(k1,k2,k3), (2)

where d(k1,k2,k3) is a delta function in SCC frequency space lo-
cated at the (k1,k2,k3) grid cell. Similar transforms, e.g. FCSC and
FCCS can be used to generate delta functions for uy and uz. Thus,
any eigenfunction can be compressed down to three integers (the
kis) and three floats (the k terms).

Asymptotically, this mixed DCT/DST losslessly transforms an
O(N) eigenfunction down to O(1); no sparser representation is
possible. This result only applies to the ideal case of analytic
divergence-free velocity fields defined on the interior of a box.
However, the high compression it achieves is encouraging, and
motivates our further use of DCT to compress more general
divergence-free fields.

4.2. DCT-Based Compression

Following from the previous discussion, we design a DCT-based,
JPEG-like compression scheme. Each column of U represents a
vector field, and the columns are usually constructed using an SVD.
Since this SVD has already minimized the amount of redundant
information between columns, we compress them separately. Each
column contain x, y and z velocity components, and we extract each
of these components and compress them separately. Thus, if we
describe the encoding procedure for a single scalar field, it can be
applied to each velocity component of each column of U.

Analogously to JPEG, given a 3D scalar field, we decompose it
into small blocks of size b⇥b⇥b, adding continuous extra padding
in the case that one or more resolutions are not evenly divisible
by b. We then perform a 3D DCT on each block. In anticipation
of quantization, the result is then normalized so that the largest
frequency-domain value maps to the largest signed value for a 32-
bit integer.

Adaptive Quantization: After transforming the signal to the fre-
quency domain and normalizing the coefficients, JPEG then per-
forms an element-wise division of the coefficients using a 2D quan-
tization matrix in order to increase the likelihood that they will
quantize to zero. In the JPEG standard, this matrix is adjusted de-
pending on the quality setting; higher quality settings will have
lower values to preserve more detail after dividing by the matrix,
while lower quality settings will have higher values in the matrix to
suppress more coefficients. For example, the following is the JPEG

matrix that corresponds to 50% quality:

Q2D =

2

666664

16 11 10 16 . . .
12 12 14 19 . . .
14 13 16 24 . . .
14 17 22 29 . . .
...

...
...

...
. . .

3

777775
2 Rb⇥b. (3)

We index the matrix entries Q2D(u,v) such that the upper-left cor-
ner, Q2D(0,0) = 16, corresponds to the DC component. The en-
tries of Q2D were obtained from perceptual data [Say12], and in
general, higher frequency components have larger entries in order
to suppress these coefficients which tend to carry less information
than those in the lower frequencies.

Since we are not working with 2D color data but rather with
3D velocity fields, we need to construct a 3D version of this ma-
trix, Q3D 2 Rb⇥b⇥b. A close inspection of all of the complete ma-
trix corresponding to Eqn. 3 suggests that Q2D(u,v) / u+ v, so a
straightforward first attempt is:

Q3D(u,v,w) = 1+u+ v+w. (4)

Other applications [YL95] have used similar reasoning to arrive
at similar matrices. However, while the 2D case has a suite of
Q2D matrices at its disposal that correspond to different levels
of perceived visual quality, this data does not generalize to non-
chromatic, 3D velocity data.

We instead propose to automatically generate a variety of differ-
ent Q3D matrices during the compression stage. For each b⇥b⇥b
block, the energy is likely to reside in different frequencies, so we
generate a custom matrix,

Q3D(u,v,w) = (1+u+ v+w)g, (5)

where g is a parameter that is adjusted per block. Linear models
are also possible, e.g. Q3D(u,v,w) = g (1+u+ v+w), but prelim-
inary experiments found that this model was too simple to yield
useful compressions. Analogous to the 2D case, the user specifies a
quality parameter p. In 3D, we interpret p as the percentage of the
original energy that should be preserved. Each block then performs
a bisection search over the range g 2 [0,n], where n = 32 is the
number of bits that were used for normalization prior to quantiza-
tion. Higher values of n are essentially meaningless, as they damp
everything except the DC component to zero. In practice, we found
that this bisection search terminates within a very small tolerance
of the desired energy preservation after at most 8 iterations.

This approach provides a custom quantization matrix for each
block while maintaining an approximately constant energy loss per
block. Important high-frequency components are preserved when
they are present, while smoother, low-frequency blocks are still ag-
gressively compressed. This block-varying value g must then be
computed by the encoder and provided to the decoder in the en-
coded bytestream. For an 8⇥8⇥8 block, the memory footprint of
a single additional scalar g per block is negligible. We compare this
strategy to a uniform non-adaptive quantization approach in §5.

Flattening and Encoding: After quantization, we convert the 3D
array into a 1D array and perform run-length encoding [YL95,
Say12]. No novel strategy needs to be devised for this component.
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The 3D to 1D conversion is performed in a zigzag pattern that is
a straightforward 3D extension of the usual 2D JPEG ordering,
which tries to group coefficients with similar sizes together in the
bytestream. In our case, the entries of Q3D(u,v,w) are arranged in
increasing order of their sum u+ v+w, which effectively clusters
components with approximately the same frequency. The results
are then run-length encoded in order to discover long runs of zeros.

4.3. Subspace Decompression

Batched Random Access: The block-wise compression scheme
we have described supports the batched random access require-
ments from §3 at runtime. For a single random access, the block
containing the cell of interest is decompressed, which means the
other b⇥b⇥b�1 entries are potentially decoded needlessly. How-
ever, the coherency of the underlying incompressible flow tends to
cluster cells of interest in the same blocks, so we did not find that
this extra overhead created a major bottleneck.

The decompression proceeds in two stages, where an initial pass
assembles the batch of requested cells and determines which blocks
need to be decompressed. A second pass then decompresses the
actual blocks. By consolidating the cell requests, it is guaranteed
that no block is ever redundantly decompressed twice.

Projection and Reconstruction: The fast projection and recon-
struction requirements from §3 are not as straightforward. A naïve
strategy is to decompress the entire matrix U for each projection
and reconstruction. For a given block size B = b⇥ b⇥ b, this re-
sults in 3N⇥r

B DCTs and IDCTs at every timestep. These transforms
dominate the running time (Table 1), and largely negate the perfor-
mance gains of the subspace approach. While memory savings are
achieved, the speed-memory tradeoff is unacceptable.

However, we observe that both of the matrix-vector products
Uq = u and UT u = q can be performed sparsely in the frequency
domain. The projection operator then only performs a DCT on u,
not all r columns of U. This operation is permissible because the
DCT is a unitary transform, and therefore preserves inner products.
Specifically, if x and y are vectors in the spatial domain and x̂ and
ŷ are their counterparts in the frequency domain, hx,yi = hx̂, ŷi,
where h·, ·i denotes the usual Euclidean inner product.

We define the following notation to describe the advantages of
this approach. The frequency domain version of a quantity is de-
noted with a hat, e.g., U with DCT applied to each column is bU.
The lossy, compressed version of bU, where near-zero values have
been quantized to zero, is denoted bC. The spatial domain version
of bC is correspondingly C. In essence, our compression scheme has
introduced the approximations U ⇡ C and bU ⇡ bC.

Using the unitary property, we can see that if we use DCT to
transform u to û, then UT u = q is equivalent to bUT û = q. Using
the compressed versions will yield a result slightly different from q,
but the same relation holds: CT u = bCT û ⇡ q. The naïve approach
spends most of its time transforming bC to C, but by constructing û,
we can avoid this stage altogether. Replacing the IDCT over all r
columns of bC with a single DCT of u is significant, because even
for a modest r = 10, the number of transforms is reduced by an
order of magnitude. Additionally, the bCT û product can now exploit

the sparsity of bC that was discovered by the compression stage.
Since bC is static over the lifetime of a simulation, the location of all
the zero entries can be cached, and these multiplies can be skipped.

A fast reconstruction strategy then follows: bCq ⇡ û. The sparsity
of bC can again be exploited here, as each column bC is scaled by an
entry of q, and all the multiplies with respect to zeroes can again be
skipped. Once û is known, an IDCT can be performed on it once,
and IDCTs over all r columns of bC is again avoided.

For a C matrix containing 3N ⇥ r non-zero entries, after taking
the complexity of the DCTs and IDCTs into account, naïve pro-
jection and reconstruction each take O

⇣
3N ⇥ r+ 3N⇥r

B B logB
⌘
=

O((3N ⇥ r) logB) time. Using our approach, a bC containing S non-
zero entries instead takes O

⇣
S+ 3N

B B logB
⌘
= O(S+3N logB)

time. The r factor has been removed as a multiplier of logB, and
replaced with the additive S term. As seen in Table 1, this results in
speedups that approach an order of magnitude.

4.4. Discussion

We have described one possible scheme for compressing subspace
fluid basis matrices. Several initially promising possibilities were
also investigated, but ultimately discarded.

The motivating example from §4.1 uses mixed DST and DCT to
achieve ideal compression, whereas we only use DCT. The use of
DST was investigated as well, but was not found to give superior
results. Unless the velocity values along a block border are all ex-
actly zero, i.e. the block has Dirichlet boundaries along all its walls,
the DCT consistently yields superior results.

The U matrix is usually constructed using an SVD [TLP06,
KD13] or an eigenanalysis [DWLF12, LMH⇤15]. Therefore, cor-
responding singular values or eigenvalues are usually available for
each column of U. These values could be used to guide the com-
pressor, e.g., by allowing columns with unimportant singular values
si to be compressed more aggressively. However, we found that the
relationship between si and visual quality is not straightforward.
Especially during re-simulation, columns that had unimportant si
during the initial analysis can obtain large coefficients in q. In such
cases, the aggressive compression can become visible.

Prior to compression, an additional SVD could be run on each
b⇥ b⇥ b block in U to determine if there is a superior coordinate
system for compression other than the canonical x, y, and z axes.
However, the per-block rotation that this introduces breaks the fast
matrix-vector multiply described in §4.3. Thus, we put this aside in
favor of the fast multiplies, but a method that supports both opera-
tions is an interesting direction for future work.

5. Results

We tested our compression scheme on several subspace fluid re-
simulation scenarios generated by the open-source package Zephyr
[KD13]. The fluid simulation data were generated using a Precon-
ditioned Conjugate Gradient (PCG) solver with a Modified Incom-
plete Cholesky preconditioner [Bri15]. The codebase was imple-
mented in C++ and tests were run on a 12-core, 2.66 GHz Mac Pro
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Naïve, e.g., Cq Sparse, e.g., bCû Speedup
Plume 72.0s 8.7s 8.3X
Sphere 74.9s 7.6s 9.9X

Fan 72.6s 12.9s 5.6X

Table 1: Timings of naïve projections vs. sparse projections. The
sparse projection is significantly faster, and dramatically reduces
the overhead of using the compressed representation of U. These
timings represent the average time to perform both the projection
and reconstruction stages in a single timestep.

Figure 1: Plume scene: The overall motion and visual quality of
the plume is preserved until the compression ratio is increased to
approximately 22 : 1. The 1 : 1 corresponds to using the original U
matrix.

with 96 GB RAM. For the DCT and IDCT, we used FFTW [FJ05],
and Eigen [GJ⇤10] was used for other linear algebra operations.

In all of our simulations, we set b = 8, so 8⇥8⇥8 blocks were
used. Block sizes of b= 4 and b= 16 were also tested, but we found
that smaller blocks redundantly captured the same low frequency
information, while larger blocks lessened the likelihood of finding
smooth regions that could be compressed aggressively.

In all of our subspace simulations, we used the matrix-vector
product strategy from §4.3, which accelerated the computation sig-
nificantly (Table 1). Without this acceleration, the subspace simu-
lations ran almost at parity with the original full-space simulations,
invalidating any speed advantages of the subspace approach. On
average, our sparse product ran roughly 3–4 times as slow as the
uncompressed matrix vector product. Asymptotically, our sparse
product can have a superior running time, as it does not need to
touch all 3N ⇥ r entries in the matrix. Our scenes did not achieve
sufficient sparsity to demonstrate this superiority, but we expect that
as compression methods improve, multiplying against bC will even-
tually become faster than multiplying with C.

Plume scene: We simulated the buoyant flow of a plume in a scene
containing no obstacles, as shown in Figure 1. The original simu-
lation resolution is 200⇥ 266⇥ 200, was run for 150 frames, and
took 09h 48m 49s (3.92 minutes per frame).

The SVD to construct the subspace from this data took 07h 05m
40s, and the compressing the subspace took at most 02h 15m 59s
(Table 2). Constructing and compressing the subspace is therefore

Figure 2: Sphere scene: The motion and visual quality remains
high until approximately 14 : 1 compression. At 30 : 1, the differ-
ences are very significant.

roughly at parity with running the entire simulation a second time.
However, once the subspace has been constructed once, we can run
new simulations very quickly.

We found that the subspace could be compressed by roughly an
order of magnitude (11 : 1) before the visual quality began to de-
grade. However, we also noted that the compression scheme ap-
pears to degrade relatively gracefully. For higher compression rates,
the motion gradually deviates from the uncompressed motion, and
JPEG-like block artifacts begin to appear.

Sphere scene: Next, we simulated the same plume in the pres-
ence of a sphere obstacle. The original simulation resolution is
200⇥ 266⇥ 200, was run for 150 frames, and took 10h 37m 50s
(4.25 minutes per frame). The time to construct and compress the
subspace, respectively 09h 17m 19s and a maximum of 02h 34m
30s, was again found to be roughly at parity with running the sim-
ulation a second time.

Surprisingly, we found that this subspace compressed slightly
better than the plume scene (14 : 1) before the visual quality began
to degrade. The expectation was that the sphere boundary would
create a discontinuity in the velocity field that the compressor
would have trouble capturing. Instead, the interior of the static ob-
stacle created a region of constant (zero) velocity, and also induced
the formation of smooth, near-zero regions in its vicinity. Rather
than create a discontinuity containing many high frequencies, these
constant and smooth regions mostly contained low-frequencies that
the compressor could easily leverage. No-slip boundaries were
used along the surface of the obstacle; if free-slip were used in-
stead, the anticipated discontinuities may still appear.

For this scene, we also compared our adaptive quantization strat-
egy to a uniform, non-adaptive approach. There is no canonical 3D
version of Eqn. 3, so we instead selected a uniform g that pro-
duced an equivalent energy loss in the highest frequency compo-
nent, i.e., we set g such that it matched the 32-bit equivalent of the
lower-right hand entry of Eqn. 3. This strategy still produced a 7 : 1
compression, but our adaptive strategy was able to achieve a higher
compression of 14 : 1.

Out-of-core Comparison: We compared our performance to an
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Plume Uncompressed 6 : 1 8 : 1 11 : 1 13 : 1 22 : 1
Time per frame 4.5s 19.9s 17.9s 16.1s 15.2s 12.8s

Compression preprocess N/A 02h 07m 55s 01h 53m 48s 02h 07m 55s 02h 12m 17s 02h 15m 59s
Sphere Uncompressed 10 : 1 14 : 1 16 : 1 23 : 1 30 : 1

Time per frame 5.4s 17.1 15.1s 14.4s 13.0s 12.2s
Compression preprocess N/A 02h 01m 38s 02h 20m 14s 02h 07m 59s 02h 34m 30s 02h 27m 59s

Fan Uncompressed 5 : 1 6 : 1 8 : 1 11 : 1 29 : 1
Time per frame 5.7s 24.4s 23.2s 19.8s 18.3s 14.8s

Compression preprocess N/A 01h 09m 37s 01h 08m 25s 01h 26m 57s 02h 18m 45s 02h 11m 51s

Table 2: Compression performance for each of the three scenes. The “sweet spot” for each scene that achieves a good balance between
compression and visual quality is shown in gray.

uncompressed simulation that does not fit in core by running the
14 : 1 version of the sphere scene on a 2-core, 1.8 GHz Macbook
Air with 8 GB RAM. On this system, the full space simulation ran
at 286.5s per frame, while our compressed subspace simulation ran
at 71.7s, yielding a speedup of roughly 4.0⇥.

The uncompressed subspace simulation requires over 70 GB of
memory, and immediately started to swap on the 8 GB system. It
ran for over 17 hours without completing a single frame, at which
time it had more than doubled the running time of the original full
space simulation, and was terminated.

Fan scene: Finally, we simulated smoke being stirred by a fan.
The original simulation resolution is 266⇥200⇥200, was run for
150 frames, and took 12h 18m 05s (4.92 minutes per frame). The
subspace construction and compression times were 08h 13m 22s
and at most 02h 18m 45s.

The moving obstacle scene achieved a compression ratio of 6 : 1
before the quality began to degrade. Here, the reduced compression
we expected to see in the sphere scene appeared. Instead of having
a smoothing effect on the velocity field, the obstacle creates new,
high-frequency velocities that are more difficult to compress. How-
ever, we did not choose to leverage any knowledge of the obstacle
motion during compression, which could be a promising avenue for
finding sparser representations.

6. Discussion and Conclusions

In order to determine whether the compression compromised the
generality of the subspace, we also ran re-simulations [KD13] on
each of our scenes using a variety of different simulation settings.
In the plume scene, we both reduced the vorticity confinement con-
stant to zero and doubled the number of total timesteps (see video),
for the sphere scene we halved the buoyancy constant (see video)
and in the fan scene, we increased the vorticity confinement con-
stant by a factor of ten (Fig. 4). The re-simulations were all run on
the “sweet-spot” compression ratios that are highlighted in Table 2.
In all cases, the overall motion was preserved, and we did not ob-
serve any significant visual artifacts compared to the uncompressed
subspace re-simulation.

In order to better understand the error introduced by the com-
pression, we plotted the relative L2 error between the q vectors ob-
tained by the uncompressed and compressed simulations. While it
is difficult to tell whether a given compressed U is too aggressive

Figure 4: Fan Re-Simulation: With vorticity confinement in-
creased by a factor of ten, the novel turbulent detail that is intro-
duced remains intact, even after basis compression.

a priori, an overaggressively-compressed U quantitatively corre-
sponds to a 10�1 relative error appearing early in the simulation.
In this case, the compression error exceeds that of the cubature in-
tegration scheme [KD13], and begins to visually dominate.

Conclusions and Future Work: We have presented a compression
method for subspace fluid simulations that is able to reduce the size
of the U matrix by up to an order of magnitude. The most imme-
diate direction for future work is the development of algorithms
that are able to reduce this matrix size even further. As seen in Ta-
ble 2, as the sparsity of the compressed representation increases,
the speed of the matrix-vector product improves. According to our
asymptotic analysis, it should eventually surpass the performance
of the direct Uq product. Therefore, finding new bases that pos-
sess the same unitary property as the DCT while increasing sparsity
should yield algorithms that are efficient in both memory and time.

Lossless compression schemes such as Huffman coding could
also be investigated, but these would not directly increase the spar-
sity of the representation, so the tradeoff between memory savings
and decompression speed would need to be balanced. Finally, the
method we have presented assumes that the velocity field is defined
on a regular grid. An approach that can be applied to unstructured,
tetrahedral meshes [LMH⇤15, SSW⇤13] would also be welcome.

c� 2016 The Author(s)
Eurographics Proceedings c� 2016 The Eurographics Association.
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Figure 3: Fan scene: The quality is preserved at 6 : 1, but at 11 : 1, the motion begins to change, and at 29 : 1, artifacts begin to appear.

0 50 100 150
10

−4

10
−3

10
−2

10
−1

10
0

Relative L
2
 Error of Compressed Plume Simulations

Simulation Timestep

R
e

la
tiv

e
 L

2
 E

rr
o

r

 

 

6 : 1

11 : 1

22 : 1

0 50 100 150
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Relative L
2
 Error of Compressed Sphere Simulations

Simulation Timestep

R
e

la
tiv

e
 L

2
 E

rr
o

r

 

 

10 : 1

14 : 1

30 : 1

0 50 100 150
10

−4

10
−3

10
−2

10
−1

10
0

Relative L
2
 Error of Compressed Fan Simulations

Simulation Timestep

R
e

la
tiv

e
 L

2
 E

rr
o

r

 

 

7 : 1

11 : 1

29 : 1

Figure 5: Relative L2 error introduced by the compressed matrix C compared to an uncompressed U over the course of a simulation. The
transition between visually undetectable and visible error corresponds to roughly an order of magnitude jump in the relative error.
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