
Anisotropic Elasticity for Inversion-Safety and Element Rehabilitation
(Supplement)

THEODORE KIM, Pixar Animation Studios
FERNANDO DE GOES, Pixar Animation Studios
HAYLEY IBEN, Pixar Animation Studios

ACM Reference Format:
Theodore Kim, Fernando De Goes, and Hayley Iben. 2019. Anisotropic Elas-
ticity for Inversion-Safety and Element Rehabilitation (Supplement). ACM
Trans. Graph. 38, 4, Article 69 (July 2019), 6 pages. https://doi.org/10.1145/
3306346.3323014

1 MATRIX AND TENSOR NOTATION
We closely follow the tensor notation of Smith et al. [2019]. General-
ized n-th order tensor notations are available (e.g. Einstein notation),
but we are only dealing with 3rd- and 4th-order tensors, so we have
found it useful to use a notation that is specialized to these orders.
For readability, we will be presenting the 2D versions of tensors and
matrices, as the 3D versions can become quite large.

1.1 3rd-order Tensors
Many tensor conventions and interpretations are available [Kolda
and Bader 2009; Simmonds 2012], but we specifically choose to view
3rdorder tensors as a vector of matrices. The key tensor that arises
of this form is ∂F

∂u , i.e. the gradient of the deformation gradient with
respect to displacement. In 2D, this tensor is ∂F

∂u ∈ ℜ2×2×6,

∂F
∂u
=

[[
∂F
∂u0

] [
∂F
∂u1

] [
∂F
∂u2

]
. . .

[
∂F
∂u5

]
,
]

(1)

where each individual ∂F
∂ui

∈ ℜ2×2. This specific tensor arises when
we convert a PK1 into the force vector for a triangle element:

force =
∂F
∂u

T
: P(F). (2)

Here, the double contraction (:) denotes a generalized dot product,

A : B =
n∑
i=0

n∑
j=0

Ai jBi j , (3)

[
a c
b d

]
:
[
e д
f h

]
= ae + b f + cд + dh, (4)[

1 3
2 4

]
:
[
1 3
2 4

]
= (1 + 4 + 9 + 16) = 30, (5)

Authors’ addresses: Theodore Kim, Pixar Animation Studios; Fernando De Goes, Pixar
Animation Studios; Hayley Iben, Pixar Animation Studios.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2019 Copyright held by the owner/author(s).
0730-0301/2019/7-ART69
https://doi.org/10.1145/3306346.3323014

but an indexing convention needs to be defined when the tensor
orders are mismatched. We use the following ordering to contract
3rd- and 2nd-order tensors:

∂F
∂u

T
: P(F) =


[
1 1
1 1

] [
2 2
2 2

]
. . .

[
6 6
6 6

]
T

:
[
1 1
1 1

]
=



4
8
12
16
20
24


.

(6)
Notably, while the overall vector is transposed, each individual ∂F

∂ui
is not.

1.2 4th-order Tensors
4th-order tensors arise when we take the Hessian of a strain energy,
∂2Ψ(F)
∂F2 , though it can sometimes be helpful to phrase it as the gra-

dient of the PK1 ∂P(F)
∂F , i.e. the matrix-valued-gradient (F ∈ ℜ2×2)

of a matrix (P(F) ∈ ℜ2×2). From this perspective, it is natural to
interpret this tensor as a matrix of matrices:

∂P(F)
∂F

=


[
∂P(F)
∂F00

] [
∂P(F)
∂F01

][
∂P(F)
∂F10

] [
∂P(F)
∂F11

] , (7)

A double contraction convention must then be established, and we
use the following:

∂P(F)
∂F

: X =



[
1 1
1 1

] [
2 2
2 2

]
[
3 3
3 3

] [
4 4
4 4

]


:
[
1 1
1 1

]
=

[
4 8
12 16

]
. (8)

The notion of an eigenmatrix is now well-defined, A : X = λX,
where A ∈ ℜ2×2×2×2 and λ ∈ ℜ is the corresponding eigenvalue.

1.3 Flattening Convention
Any n-th order tensor can be flattened (a.k.a matricized or unfolded)
into a matrix. However, there is no one canonical way to flatten
a tensor, i.e. there are three ways to flatten a 3rd-order tensor, so
the convention should be selected carefully to preserve the tensor’s
underlying structure.

Following Golub and Van Loan [2012], we define a flattening con-
vention by defining a vectorization operator “vec”. Given a matrix

ACM Trans. Graph., Vol. 38, No. 4, Article 69. Publication date: July 2019.

https://doi.org/10.1145/3306346.3323014
https://doi.org/10.1145/3306346.3323014
https://doi.org/10.1145/3306346.3323014

69:2 • Kim, T. et al

A =

[
1 3
2 4

]
, the flattening occurs in column-wise order:

vec(A) =


1
2
3
4


. (9)

A 3rd-order tensor is flattened by vectorizing each column:

B =


[
1 3
2 4

] [
5 7
6 8

] [
9 11
10 12

] (10)

=
[
[B0] [B1] [B2]

]
(11)

vec(B) =

 vec(B0) vec(B1) vec(B2)

 (12)

=


1 5 9
2 6 10
3 7 11
4 8 12


. (13)

And a 4th-order tensor is flattened by first flattening the matrix-
of-matrices in column-wise order, and then applying vec to each
matrix:

C =



[
1 3
2 4

] [
9 11
10 12

]
[

5 7
6 8

] [
13 15
14 16

]


(14)

=

[
[C00] [C01]
[C10] [C11]

]
(15)

vec(C) =

 vec(C00) vec(C10) vec(C01) vec(C11)

 (16)

=


1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16


(17)

2 STRAIN ENERGY TENSORS

2.1 Flattening the Energy Hessian, ∂2Ψ
∂F2

Assume we have an arbitrary hyperelastic, isotropic strain energy
Ψ. In order to use this energy in a Newton-type solver, we need to
compute the eigensystem of its Hessian. This could be written in
either tensor form, ∂2Ψ

∂F2 ∈ ℜ2×2×2×2, or directly in flattened form,
∂2Ψ
∂f2 ∈ ℜ4×4, where vec(F) = f .
It can often be more concise to write the Hessian in flattened

form, ∂2Ψ
∂f2 ∈ ℜ4×4, because the expression can be written in terms

of outer products. This is especially helpful when performing an

eigenanalysis, because the vectors that comprise the outer products
can turn out to be the actual eigenvectors.
Conversely, it can be helpful to write the eigensystems of the

Hessian in terms of eigenmatrices. Given the eigenvalues λi and
eigenmatrices Qi of a strain energy, it is straightforward to convert
this form back into a flattened Hessian:

∂2Ψ

∂f2 =
3∑
i=0

λi vec(Qi) vec(Qi)
T . (18)

When a Hessian needs to be projected to positive semi-definiteness
inside a Newton solver, if simple expressions are available for the
(Qi , λi) eigenpairs, then then projection can be realized by merely
clamping any negative λi to zero.

2.2 Analytic Eigenpairs from Smith et al. [2019]
Simple, closed-form expressions for the (Qi , λi) eigenpairs are the
primary findings of Smith et al. [2019]. We summarize the relevant
details here.
We denote the 4th-order Hessian ∂2Ψ

∂F2 = H and its flattened ver-
sion as vec

(
∂2Ψ
∂F2

)
= ∂2Ψ

∂f2 = H. If Q is an eigenmatrix of H, then
vec(Q) = q is an eigenvector ofH. This is important because the SVD
of the eigenmatrix Q can reveal simple structures that are impossible
to discover by inspecting the corresponding eigenvector q.

In particular, let us take the SVD of the deformation gradient F:

F = UΣVT . (19)

Smith et al. [2019] defined the following twist (T) and flip (L) matri-
ces in 2D:

T =
1
√

2
U

[
0 −1
1 0

]
VT (20)

L =
1
√

2
U

[
0 1
1 0

]
VT . (21)

Here, the U and V are the exact same rotations as those from the
SVD of F. Smith et al. [2019] showed that T and L are always two
of the four eigenmatrices in all isotropic, hyperelastic energies. An
automatic process was also proposed for obtaining closed-form
expressions for their corresponding eigenvalues, and it was also
shown that simple expressions could often be found for the other
two eigenmatrices in 2D.

A similar result was found in 3D, where six of the nine eigenma-
trices always have the following closed form:

T1 =
1
√

2
U


0 0 0
0 0 −1
0 1 0

 V
T (22)

L1 =
1
√

2
U


0 0 0
0 0 1
0 1 0

 V
T (23)

ACM Trans. Graph., Vol. 38, No. 4, Article 69. Publication date: July 2019.

Anisotropic Elasticity for Inversion-Safety and Element Rehabilitation (Supplement) • 69:3

T2 =
1
√

2
U


0 0 1
0 0 0
−1 0 0

 V
T (24)

L2 =
1
√

2
U


0 0 1
0 0 0
1 0 0

 V
T (25)

T3 =
1
√

2
U


0 −1 0
1 0 0
0 0 0

 V
T (26)

L3 =
1
√

2
U


0 1 0
1 0 0
0 0 0

 V
T . (27)

We make use of these eigenmatrices in our current work.

3 THE CHANGE-OF-BASIS TENSOR ∂Fiso
∂u

3.1 The Original Tensor

The original, isotropic change-of-basis matrix ∂F
∂u can be written as

∂Ds
∂u · D−1

m , and the entries of the ∂Ds
∂u ∈ ℜ3×3×12 3rd-order tensor

can be written:

∂Ds
∂u0

=


−1 −1 −1
0 0 0
0 0 0


∂Ds
∂u1

=


0 0 0
−1 −1 −1
0 0 0

 (28)

∂Ds
∂u2

=


0 0 0
0 0 0
−1 −1 −1


∂Ds
∂u3

=


1 0 0
0 0 0
0 0 0

 (29)

∂Ds
∂u4

=


0 0 0
1 0 0
0 0 0


∂Ds
∂u5

=


0 0 0
0 0 0
1 0 0

 (30)

∂Ds
∂u6

=


0 1 0
0 0 0
0 0 0


∂Ds
∂u7

=


0 0 0
0 1 0
0 0 0

 (31)

∂Ds
∂u8

=


0 0 0
0 0 0
0 1 0


∂Ds
∂u9

=


0 0 1
0 0 0
0 0 0

 (32)

∂Ds
∂u10

=


0 0 0
0 0 1
0 0 0


∂Ds
∂u11

=


0 0 0
0 0 0
0 0 1

 (33)

While the tensor is verbose, it clearly has a simple structure.

3.2 The Rehabilitated Tensor
The rehabilitated ∂Fiso

∂u =
∂Ds ,iso
∂u · D−1

s ,iso tensor has a more complex
form, because Ds ,iso is more complicated. The tensor is:

∂Ds
∂u0

=


−1 −b̄0 − b̄2 −1
0 0 0
0 0 0

 +


0 0
0 ∥ēmax∥ ∂n

∂u0
0

0 0

 (34)

∂Ds
∂u1

=


0 0 0
−1 −b̄0 − b̄2 −1
0 0 0

 +


0 0
0 ∥ēmax∥ ∂n

∂u1
0

0 0

 (35)

∂Ds
∂u2

=


0 0 0
0 0 0
−1 −b̄0 − b̄2 −1

 +


0 0
0 ∥ēmax∥ ∂n

∂u2
0

0 0

 (36)

∂Ds
∂u3

=


1 b̄0 0
0 0 0
0 0 0

 +


0 0
0 ∥ēmax∥ ∂n

∂u3
0

0 0

 (37)

∂Ds
∂u4

=


0 0 0
1 b̄0 0
0 0 0

 +


0 0
0 ∥ēmax∥ ∂n

∂u4
0

0 0

 (38)

∂Ds
∂u5

=


0 0 0
0 0 0
1 b̄0 0

 +


0 0
0 ∥ēmax∥ ∂n

∂u5
0

0 0

 (39)

∂Ds
∂u6

=
∂Ds
∂u7

=
∂Ds
∂u8

=


0 0 0
0 0 0
0 0 0

 (40)

∂Ds
∂u9

=


0 b̄2 1
0 0 0
0 0 0

 +


0 0
0 ∥ēmax∥ ∂n

∂u9
0

0 0

 (41)

∂Ds
∂u10

=


0 0 0
0 b̄2 1
0 0 0

 +


0 0
0 ∥ēmax∥ ∂n

∂u10
0

0 0

 (42)

∂Ds
∂u11

=


0 0 0
0 0 0
0 b̄2 1

 +


0 0
0 ∥ēmax∥ ∂n

∂u11
0

0 0

 (43)

We must now define the normal derivative, ∂n
∂u∗

, where the inward-
facing normal is,

n =
e2 × e0
∥e2 × e0∥

(44)

which yields

∂n
∂u∗
=

1
∥e2 × e0∥

∂e2 × e0
∂u∗

−
(e2 × e0)T

∂e2×e0
∂u∗[

(e2 × e0)T (e2 × e0)
] 3

2
(e2 × e0).

(45)

If we can define expressions for ∂e2×e0
∂u∗

, we are done:

∂e2 × e0
∂u0

=


0

e0,z − e2,z
−e0,y + e2,y


∂e2 × e0
∂u1

=


−e0,z + e2,z

0
e0,x − e2,x

 (46)

∂e2 × e0
∂u2

=


e0,y − e2,y
−e0,x + e2,x

0


∂e2 × e0
∂u3

=


0

e2,z
−e2,y

 (47)

∂e2 × e0
∂u4

=


−e2,z

0
e2,x


∂e2 × e0
∂u5

=


e2,y
−e2,x

0

 (48)

ACM Trans. Graph., Vol. 38, No. 4, Article 69. Publication date: July 2019.

69:4 • Kim, T. et al

∂e2 × e0
∂u6

=
∂e2 × e0
∂u7

=
∂e2 × e0
∂u8

=


0
0
0

 (49)

∂e2 × e0
∂u9

=


0

−e0,z
e0,y


∂e2 × e0
∂u10

=


e0,z

0
−e0,x


∂e2 × e0
∂u11

=


−e0,y
e0,x

0

 .

(50)

Above, e0,{x ,y ,z } respectively denote the x , y and z components of
the e0 vector.

3.3 Iben [2007] Approximation

The Moore-Penrose pseudo-inverse described by Iben [2007], ∂F
∂u =

∂Ds
∂u D†

m , is equivalent to the ∂Ds
∂u :

∂Ds
∂u0

=


−1 0 −1
0 0 0
0 0 0


∂Ds
∂u1

=


0 0 0
−1 0 −1
0 0 0

 (51)

∂Ds
∂u2

=


0 0 0
0 0 0
−1 0 −1


∂Ds
∂u3

=


1 0 0
0 0 0
0 0 0

 (52)

∂Ds
∂u4

=


0 0 0
1 0 0
0 0 0


∂Ds
∂u5

=


0 0 0
0 0 0
1 0 0

 (53)

∂Ds
∂u6

=
∂Ds
∂u7

=
∂Ds
∂u8

=


0 0 0
0 0 0
0 0 0

 (54)

∂Ds
∂u9

=


0 0 1
0 0 0
0 0 0


∂Ds
∂u10

=


0 0 0
0 0 1
0 0 0

 (55)

∂Ds
∂u11

=


0 0 0
0 0 0
0 0 1

 (56)

Similar to the rehabilitated tensor, ∂Ds
∂u6

, ∂Ds∂u7
, ∂Ds∂u8

are zeroed out,
but the middle columns in ∂Ds

∂u0
, ∂Ds∂u1

, and ∂Ds
∂u2

are as well. Interest-
ingly, if we add back the middle columns back to ∂Ds

∂u0
, ∂Ds∂u1

, and
∂Ds
∂u2

and apply this simpler tensor in lieu of the one from §3.2, the
resulting forces approximate the exact result quite closely. In prac-
tice, we found this to be an excellent approximation of the exact
tensor.

4 REHABILITATING TWO DEGENERATE DIRECTIONS
Elements with two degenerate directions, e.g. a 3D tetrahedron that
has collapsed into a needle, can be addressed using an approach
similar to one degenerate direction. Whereas before we assumed
that only ē1 was degenerate, we now assume that ē2 is as well. The
ē0 is now the only remaining “good” direction.

4.1 Building An Orthogonal Basis
The most significant difference is that the degeneracies now span
an arbitrary plane, so must select two directions within the plane.
We build a direction orthogonal ē0 using a matrix O, i.e. Oē0, where
O can be any of the Tx , Ty or Tz twist matrices from the main
document. The third direction then follows as the new normal n̄ =
Oē0×ē0
∥Oē0×ē0 ∥

. We can then construct a new version of Dm,iso:

Dm,iso =

 ē0 ê1 ê2

 (57)

=

 ē0 b̄01ē0 + ∥ē0∥n̄
(
b̄02I + ∥ē0∥O

)
ē0

 (58)

where b̄01 =
ē1 ·ē0
∥e0 ∥2

2
and b̄02 =

ē2 ·ē0
∥e0 ∥2

2
are the normalized projections

onto ē0. Under deformation, n = e0×Oe0
∥e0×Oe0 ∥

, and Ds ,iso becomes:

Ds ,iso =

 e0 b̄01e0 + ∥ē0∥n
(
b̄02I + ∥ē0∥O

)
e0

 . (59)

4.2 The Change-of-Basis Tensor

A rehabilitated ∂Ds ,iso
∂u must now be constructed again for the change-

of-basis tensor ∂Fiso
∂u . Whereas three matrices, ∂Ds

∂u6. . .8
, were zeroed

out in the case of one degenerate direction, six matrices are zeroed
for two degenerate directions: ∂Ds

∂u6. . .11
. The other six matrices are:

∂Ds
∂u0

=


−1 −b̄01 −b̄02 − ∥ē0∥
0 0 0
0 0 0

 +


0 0
0 ∥ē0∥ ∂n

∂u0
0

0 0


(60)

∂Ds
∂u1

=


0 0 0
−1 −b̄01 −b̄02 − ∥ē0∥
0 0 0

 +


0 0
0 ∥ē0∥ ∂n

∂u1
0

0 0


(61)

∂Ds
∂u2

=


0 0 0
0 0 0
−1 −b̄01 −b̄02 − ∥ē0∥

 +


0 0
0 ∥ē0∥ ∂n

∂u2
0

0 0


(62)

∂Ds
∂u3

=


1 b̄01 b̄02 + ∥ē0∥
0 0 0
0 0 0

 +


0 0
0 ∥ē0∥ ∂n

∂u3
0

0 0

 (63)

∂Ds
∂u4

=


0 0 0
1 b̄01 b̄02 + ∥ē0∥
0 0 0

 +


0 0
0 ∥ē0∥ ∂n

∂u4
0

0 0

 (64)

∂Ds
∂u5

=


0 0 0
0 0 0
1 b̄01 b̄02 + ∥ē0∥

 +


0 0
0 ∥ē0∥ ∂n

∂u5
0

0 0

 (65)

ACM Trans. Graph., Vol. 38, No. 4, Article 69. Publication date: July 2019.

Anisotropic Elasticity for Inversion-Safety and Element Rehabilitation (Supplement) • 69:5

We must again compute a normal derivative for this case, which
takes the form:

∂n
∂u∗
=

1
∥Oe0 × e0∥

∂Oe0 × e0
∂u∗

−
(Oe0 × e0)T

∂Oe0×e0
∂u∗[

(Oe0 × e0)T (Oe0 × e0)
] 3

2
(Oe0 × e0).

(66)

We could then define ∂Oe0×e0
∂u∗

, but more useful expressions are

obtained for specific O. When O =


0 1 0
−1 0 0
0 0 0

 , the vectors are:
∂Oe0 × e0
∂u0

= −
∂Oe0 × e0
∂u3

=


−e0,z

0
2e0,x

 (67)

∂Oe0 × e0
∂u1

= −
∂Oe0 × e0
∂u4

=


0

−e0,z
2e0,y

 (68)

∂Oe0 × e0
∂u2

= −
∂Oe0 × e0
∂u5

=


−e0,x
−e0,y

0

 (69)

For O =


0 0 0
0 0 −1
0 1 0

 , they are:

∂Oe0 × e0
∂u0

= −
∂Oe0 × e0
∂u3

=


0

−e0,y
−e0,z

 (70)

∂Oe0 × e0
∂u1

= −
∂Oe0 × e0
∂u4

=


2e0,y
−e0,x

0

 (71)

∂Oe0 × e0
∂u2

= −
∂Oe0 × e0
∂u5

=


2e0,z

0
−e0,x

 (72)

Finally, when O =


0 0 1
0 0 0
−1 0 0

 :
∂Oe0 × e0
∂u0

= −
∂Oe0 × e0
∂u3

=


−e0,y
2e0,x

0

 (73)

∂Oe0 × e0
∂u1

= −
∂Oe0 × e0
∂u4

=


−e0,x

0
−e0,z

 (74)

∂Oe0 × e0
∂u2

= −
∂Oe0 × e0
∂u5

=


0

2e0,z
−e0,y

 (75)

10−26 10−21 10−16 10−11 10−6 10−1
102

1010

1018

Knupp Score

M
es
h
C
on

di
ti
on

N
um

be
r

Condition Number, Row of Bad Elements

SNH
StVK
ARAP

Dirichlet

10−26 10−21 10−16 10−11 10−6 10−1
102

1010

1018

Knupp Score
M
es
h
C
on

di
ti
on

N
um

be
r

Condition Number, Slice of Bad Elements

SNH
StVK
ARAP

Dirichlet

10−26 10−21 10−16 10−11 10−6 10−1
102

1010

1018

Knupp Score

M
es
h
C
on

di
ti
on

N
um

be
r

Condition Number, Single Bad Element, 2X Stretch

SNH
StVK
ARAP

Dirichlet

10−26 10−21 10−16 10−11 10−6 10−1
102

1010

1018

Knupp Score

M
es
h
C
on

di
ti
on

N
um

be
r

Condition Number, Row of Bad Elements, 2X Stretch

SNH
StVK
ARAP

Dirichlet

Fig. 1. We ruin the Knupp score of a varying number of tets in a mesh, both
at rest, and when the mesh has been stretched by a factor of 2X, so that
the configuration is far from equilibrium. The condition number of a mesh
degrades at the same exponential rate under all these scenarios.

ACM Trans. Graph., Vol. 38, No. 4, Article 69. Publication date: July 2019.

69:6 • Kim, T. et al

10−5 10−4 10−3 10−2 10−1 100

104

107

1010

Area Score

C
on

di
ti
on

N
um

be
r

2D Condition Number over Area

SNH
ARAP

Dirichlet

10−5 10−4 10−3 10−2 10−1 100

104

107

1010

Angle Score

C
on

di
ti
on

N
um

be
r

2D Condition Number over Angle

SNH
ARAP

Dirichlet

10−10 10−8 10−6 10−4 10−2 100

104

107

1010

Knupp Score

C
on

di
ti
on

N
um

be
r

2D Condition Number over Knupp

SNH
ARAP

Dirichlet

Fig. 2. The exponential trends appear in 2D, regardless of the quality mea-
sure. Area, angle, and Knupp scores were used, and the trend persists.

5 MESH CONDITION NUMBER UNDER ALTERNATIVE
SCENARIOS

We progressively ruined the conditioning of a mesh by flattening a
single tet, a row of tets, and a slab of tets in Figure 1. We ran the test
at the rest state of the mesh, and after the mesh had been scaled by
a factor of 2 in the x direction. While the translations of the plots
change, the trend remains exactly the same.

The exponential decay of the condition number appears to be rel-
atively insensitive to both the mesh dimensionality and the quality
measure. We flattened a single triangle in a 2D mesh in the same

manner as the 3D case, and plotted the trend of the condition num-
ber using the Knupp score, as well as the area term and angle term
in isolation (Fig. 2). Again, the trend appears the same.

REFERENCES
G. H. Golub and C. F. Van Loan. 2012. Matrix computations. Vol. 3. JHU Press.
H. Iben. 2007. Generating Surface Crack Patterns. Ph.D. Dissertation. University of

California, Berkeley.
T. G. Kolda and B. W. Bader. 2009. Tensor decompositions and applications. SIAM Rev.

51, 3 (2009), 455–500.
J. G. Simmonds. 2012. A brief on tensor analysis. Springer Science & Business Media.
B. Smith, F. de Goes, and T. Kim. 2019. Analytic Eigensystems For Isotropic Distortion

Energies. ACM Trans. Graph. (2019).

ACM Trans. Graph., Vol. 38, No. 4, Article 69. Publication date: July 2019.

	1 Matrix and Tensor Notation
	1.1 3rd-order Tensors
	1.2 4th-order Tensors
	1.3 Flattening Convention

	2 Strain Energy Tensors
	2.1 Flattening the Energy Hessian, 2 F2
	2.2 Analytic Eigenpairs from Smith:2019

	3 The Change-of-Basis Tensor Fisou
	3.1 The Original Tensor
	3.2 The Rehabilitated Tensor
	3.3 Iben:2007 Approximation

	4 Rehabilitating Two Degenerate Directions
	4.1 Building An Orthogonal Basis
	4.2 The Change-of-Basis Tensor

	5 Mesh Condition Number Under Alternative Scenarios
	References

